SuperScript™ III One-Step RT-PCR System with Platinum™ Taq DNA Polymerase, 25 rxns - FAQs

View additional product information for SuperScript™ III One-Step RT-PCR System with Platinum™ Taq DNA Polymerase - FAQs (12574026, 12574018)

13 product FAQs found

How can I remove genomic DNA contamination from my sample prior to performing RT-PCR?

If amplification products are generated in the control tube/well that contains no reverse transcriptase (i.e., the no-RT control), it may be necessary to eliminate residual genomic DNA from the RNA sample. Use the following protocol to remove genomic DNA from the total RNA preparation.Random primers are the best choice for degraded RNA, RNA with heavy secondary structure, non-polyadenylated RNA, or prokaryotic RNA. It is recommended only for two-step RT-PCR, and typically gives the highest yields, although the cDNA may not necessarily be full length. Oligo(dT) primers are good to use when trying to recover full-length cDNA from 2-step RT-PCR. The reaction is influenced by secondary structure and RNA quality. Gene specific primers should be used for very specific, mainly one-step RT-PCR reactions. Random primers are the best choice for degraded RNA, RNA with heavy secondary structure, non-polyadenylated RNA, or prokaryotic RNA. It is recommended only for two-step RT-PCR, and typically gives the highest yields, although the cDNA may not necessarily be full length. Oligo(dT) primers are good to use when trying to recover full-length cDNA from 2-step RT-PCR. The reaction is influenced by secondary structure and RNA quality. Gene specific primers should be used for very specific, mainly one-step RT-PCR reactions.

Add the following to an autoclaved 0.5 mL microcentrifuge tube on ice:
1.Total RNA, ideally, less than or equal to 1 µg. (See Note 1 below.)
2.1.0 µL of 10X DNase buffer (200 mM Tris, pH 8.3, 500 mM KCl, 20 mM MgCl2).
3.0.1 U-3.0 U of DNase I (RNase-free, Cat. No. 18047019) or 1.0 U Dnase I, Amplification Grade (Cat. No. 18068015. (See Note 2 below.)
4.Bring volume up to 10 µL with DEPC-treated water.
5.Incubate at room temperature for 15 min. (See Note 3 below.)
6.Terminate the reaction by adding 1 µL 25 mM EDTA and heat 10 min at 65 degrees C. (See Note 4 below.)
7.Place on ice for 1 minute.
8.Collect by brief centrifugation. This mixture can be used directly for reverse transcription.

Please note the following:
1.To work with higher quantities of RNA, scale up the entire reaction linearly. Do not exceed 2 µg RNA in the 10 µL reaction. More RNA will increase the viscosity of the solution and prevent the DNAse I from diffusing and finding the DNA.
2.DNAse I, Amplification Grade has been extensively purified to remove trace ribonuclease activities commonly associated with other "RNAse-free" enzyme preparations and does not require the addition of placental RNAse inhibitor.
3.It is important not to exceed the 15 minute incubation time or the room temperature incubation. Higher temperatures and longer times could lead to Mg2+-dependent hydrolysis of the RNA.
4.This procedure requires careful pipetting of all solutions so that the concentration of divalent metal cation (Mg2+) is controlled.
5.Because the DNAse I must be heated to 65 degrees C to inactivate the enzyme, the concentration of free divalent metal ions must be low enough (less than 1 mM) after addition of the EDTA to prevent chemical hydrolysis of the RNA. See references below.
After the addition of EDTA, there is an approximately 1:1 molar ratio of Mg2+ :EDTA. EDTA chelates Mg2+ molecules on a 1:1 molar basis. Therefore, this RNA can be directly used in a reverse transcription reaction. First-strand reverse transcription buffers typically result in a final concentration of 2.5 mM Mg2+. If the reverse transcription buffer does not contain MgCl2, add it to the reaction at a final concentration of 2.5 mM. This results in a net final concentration of approximately 2.25 to 2.5 mM MgCl2.

References on RNA hydrolysis:
Molekulyarnaya Biologiya (1987) 21:1235-1241.
References on the mechanism of hydrolysis by other cations:
Eichorn GL and Butzov JY (1965) Biopolymers 3:79.
Butzov JY and Eichorn GL (1965) Biopolymers 3:95.
Farkas WR (1968) Biochim Biophys Acta 155:401.
The authors of the first paper express the opinion that the mechanism of the nonspecific hydrolysis by cations which proceeds through 2',3' cyclic phosphate formation is similar to that of specific hydrolysis such as RNA splicing.

How much RNA should be employed for first-strand cDNA synthesis?

The amount of RNA template for a cDNA synthesis is highly flexible and depends upon the amount of sample available and an individual's need. In general, 1 µg total RNA is used in a typical 20-µL RT reaction.

Find additional tips, troubleshooting help, and resources within ourReverse Transcription and RACE Support Center.

Should I treat the cDNA with RNase H prior to downstream processing?

Some feel that the RNA in the RNA:DNA duplex after reverse transcription will inhibit PCR primers from annealing and amplifying the cDNA. The RNA is still present when using RNase H-mutant RTs. RNase H frees the cDNA from the RNA. On the other hand, some feel that the 95 degrees C denaturing step will cause the RNA primers to fall off the DNA and therefore RNase H treatment is not necessary. Therefore, this step is optional. For cloning of larger fragments, RNase H treatment can be beneficial.

What percentage of RNA is converted to cDNA when performing reverse transcription?

This depends highly on the quality of the sample. mRNA itself makes up 1-5% of total RNA. Depending on the primer and enzyme used, reverse transcription can covert >70% of that into cDNA.

Find additional tips, troubleshooting help, and resources within our Reverse Transcription and RACE Support Center.

I'm setting up my RT reaction and am trying to decide whether I should use random primers, oligo(dT) primer, gene-specific primer, or oligo(dT)/random mix primers. What would you suggest?

Random primers are the best choice for degraded RNA, RNA with heavy secondary structure, non-polyadenylated RNA, or prokaryotic RNA. It is recommended only for two-step RT-PCR, and typically gives the highest yields, although the cDNA may not necessarily be full length. Oligo(dT) primers are good to use when trying to recover full-length cDNA from 2-step RT-PCR. The reaction is influenced by secondary structure and RNA quality. Gene specific primers should be used for very specific, mainly one-step RT-PCR reactions.

Find additional tips, troubleshooting help, and resources within our Reverse Transcription and RACE Support Center.

The DTT in my reverse transcription kit has precipitated—can I still use it?

No, the DTT will need to be replaced.

Are SuperScript II and III RTs RNase H minus?

These enzymes contain the domains of RNase H, but they have been mutated. In RNase H activity detection assays, we are not able to detect any RNase H activity.

Can I purchase the SuperScript III buffer separately?

Yes, we sell a M-MLV RT buffer (Cat. No. 18057018), which works with M-MLV RT, SuperScript II RT, and SuperScript III RT.

Will adding EDTA prior to heat-inactivation of DNase I inhibit reverse transcription with SuperScript RT?

No. After the addition of EDTA, there is an approximately 1:1 molar ratio of Mg2+:EDTA. EDTA chelates Mg2+ molecules on a 1:1 molar basis. Therefore, this RNA can be directly used in a reverse transcription reaction. First-strand reverse transcription buffers typically result in a final concentration of 2.5 mM Mg2+. If the reverse transcription buffer does not contain MgCl2, add it to the reaction at a final concentration of 2.5 mM. This results in a net final concentration of approximately 2.25 to 2.5 mM MgCl2.

In comparing the different SuperScript III kit formats, I notice that some utilize a 10X buffer and others a 5X. The recipes are also slightly different - why is this?

It is recommended to use the buffer that comes supplied with the enzyme. The reasons for the slight differences are that the kits were developed at different times, possibly by different R&D groups.

Does SuperScript III exhibit TdT activity?

No, if TdT activity is required please use our SuperScript II RT.

What is the difference between SuperScript III RT and the RT in the SuperScript VILO kit?

The SuperScript VILO cDNA Synthesis Kit contains a mix of SuperScript III RT and helper proteins which help to increase the efficiency of the reverse transcription reaction and thus improve yield. The RT in the SuperScript

The SuperScript VILO cDNA Synthesis Kit (Cat. No. 11754050) contains a mix of SuperScript III RT and helper proteins which help to increase the efficiency of the reverse transcription reaction and thus improve yield. The RT in the SuperScript VILO kit is active at 42 degrees C due to the helper proteins.

What is the difference between Platinum technology and AccuPrime technology?

With Platinum technology, anti-DNA polymerase antibodies bind to the enzyme until the denaturing step at 94 degrees C, when the antibodies degrade. The polymerase is now active and primer extension can occur. AccuPrime Taq combines Platinum Taq (Taq + Platinum antibodies) with proprietary thermostable AccuPrime accessory proteins. The 10X reaction buffer contains the accessory proteins which enhance specific primer-template hybridization during each cycle of PCR.