电泳迁移率实验 (EMSA) 试剂盒,含 SYBR™ Green & SYPRO™ Ruby EMSA 染料
Invitrogen17万+抗体限时买二赠一,靶点广,灵活用!
Femto超敏底物钜惠大包装上市!100mL到手价不到500元!
Product Image
Invitrogen™

电泳迁移率实验 (EMSA) 试剂盒,含 SYBR™ Green & SYPRO™ Ruby EMSA 染料

这种基于荧光的电泳迁移率实验 (EMSA) 试剂盒可提供一种快速、简单和定量方法以检测同一凝胶中的核酸和蛋白质。该试剂盒使用两种荧光染料进行检测:SYBR™ Green EMSA 核酸凝胶染料,用于 RNA了解更多信息
Have Questions?
货号数量
E330751 kit
货号 E33075
价格(CNY)
1,699.00
飞享价
Ends: 31-Dec-2025
2,029.00
共减 330.00 (16%)
Each
添加至购物车
数量:
1 kit
请求批量或定制报价
价格(CNY)
1,699.00
飞享价
Ends: 31-Dec-2025
2,029.00
共减 330.00 (16%)
Each
添加至购物车
这种基于荧光的电泳迁移率实验 (EMSA) 试剂盒可提供一种快速、简单和定量方法以检测同一凝胶中的核酸和蛋白质。该试剂盒使用两种荧光染料进行检测:SYBR™ Green EMSA 核酸凝胶染料,用于 RNA 或 DNA 检测;和 SYPRO™ Ruby EMSA 蛋白凝胶,用于蛋白质检测。电泳后,核酸和蛋白质依次在凝胶中染色,因此标记会干扰所检测的蛋白结合是不可能的。核酸染色仅需 20 分钟左右,随后的蛋白染色需要大约 4 小时。
仅供科研使用。不可用于诊断程序。
规格
检测电泳迁移率实验(Electrophoretic Mobility Shift Assay,以下简称 EMSA)
检测方法荧光
产品线SYBR、SYPRO
产品类型电泳迁移分析 (EMSA) 试剂盒
数量1 kit
运输条件室温
Unit SizeEach
内容与储存
储存在冰箱(-5 至 -30°C)中并避光。

常见问题解答 (FAQ)

什么是凝胶迁移实验(shift assay)?什么是超迁移实验(supershift assay)?

凝胶迁移实验是一种使用非变性PAGE测定DNA结合的实验。它提供了一种简单、快速并且非常灵敏的检测序列特异性DNA结合蛋白的方法。蛋白与末端标记的DNA片段结合形成一个独立的蛋白-DNA复合物。你可以用此方法检测纯化蛋白或粗提取物中的未知因子与DNA的结合。该方法也可以实现对DNA结合蛋白的亲和性、丰度、结合速率常数、解离速率常数,以及结合特异性进行定量分析。

超迁移实验是凝胶迁移DNA结合实验的一种变形,它使用抗体检测蛋白-DNA复合体中的蛋白。向一个结合反应内加入一种特异性抗体可能会产生下面几种效应。如果被抗体识别的蛋白与复合体的形成无关,那么加入抗体应当对电泳没有任何影响。如果形成复合体的蛋白被抗体识别,那么该抗体或者将阻止复合体的形成,或者将形成一个抗体-蛋白-DNA三元复合物,从而导致蛋白-DNA复合体迁移率的进一步下降(超迁移)。在蛋白结合DNA前还是结合后加入抗体,结果可能会不同(特别是当抗原表位是在蛋白与DNA结合区域时)。

What is a "supershift"?

A supershift assay is a method for positively identifying a protein:DNA interaction on an EMSA. An antibody (typically 1 µg) is added to the binding reaction. During electrophoresis, the antibody:protein:DNA complex migrates slowly, causing a “supershift” compared to the “shift” caused by a protein:DNA complex. Not all antibodies will cause a supershift. Some antibodies do not bind to proteins once they are bound to DNA. Some antibodies can prevent protein:DNA interactions but can still be used to confirm the identity of a protein that causes a shift in the absence of the antibody.

Find additional tips, troubleshooting help, and resources within our Protein Assays and Analysis Support Center.

What is an electrophoretic mobility shift assay (EMSA)?

EMSAs (also called gel shifts, band shifts, gel retardation assays, or mobility assays) have been used extensively for studying protein-DNA interactions. Because protein-DNA complexes migrate more slowly through a native polyacrylamide or agarose gel than DNA alone, individual protein-DNA complexes can be visualized as discrete bands within the gel using chemiluminescence or radioisotopic detection.

Find additional tips, troubleshooting help, and resources within our Protein Assays and Analysis Support Center.

What is a shift assay? What is a supershift assay?

A shift assay is a DNA-binding assay using nondenaturing PAGE. It provides a simple, rapid, and extremely sensitive method for detecting sequence-specific DNA-binding proteins. Proteins bind specifically to an end-labeled DNA fragment corresponding to the individual protein-DNA complexes. You can use the assay to test binding of purified proteins or of uncharacterized factors in crude extracts. This assay also permits quantitative determination of the affinity, abundance, association rate constants, dissociation rate constants, and binding specificity of DNA-binding proteins.

A supershift assay is a variation of the mobility shift DNA-binding assay that uses antibodies to identify proteins present in the protein-DNA complex.Addition of a specific antibody to a binding reaction can have one of several effects. If the protein recognized by the antibody is not involved in complex formation, addition of the antibody should have no effect. If the protein that forms the complex is recognized by the antibody, the antibody can either block complex formation or it can form an antibody-protein-DNA ternary complex and thereby specifically result in a further reduction in the mobility of the protein-DNA complex (a supershift). Results may be different depending upon whether the antibody is added before or after the protein binds DNA (particularly if there are epitopes on the DNA binding surface of the protein).

Find additional tips, troubleshooting help, and resources within our Nucleic Acid Purification and Analysis Support Center.

What is the composition of the 5X Binding Buffer included within Electrophoretic Mobility-Shift Assay (EMSA) Kit, with SYBR Green & SYPRO Ruby EMSA stains (Cat. No. E33075)?

Here is the composition of the 5X Binding Buffer:

- 50 mM Tris HCl, pH 7.4
- 750 mM KCl
- 0.5 mM DTT
- 0.5 mM EDTA

Note: This buffer is optimized for lac repressor binding to lac operator. It may not be optimal for other protein-nucleic acid interactions.

Find additional tips, troubleshooting help, and resources within our Protein Assays and Analysis Support Center.

引用和文献 (14)

引用和文献
Abstract
Regulation of Mn-superoxide dismutase activity and neuroprotection by STAT3 in mice after cerebral ischemia.
Authors:Jung JE, Kim GS, Narasimhan P, Song YS, Chan PH,
Journal:J Neurosci
PubMed ID:19474327
'Cerebral ischemia and reperfusion increase superoxide anions (O(2)(*-)) in brain mitochondria. Manganese superoxide dismutase (Mn-SOD; SOD2), a primary mitochondrial antioxidant enzyme, scavenges superoxide radicals and its overexpression provides neuroprotection. However, the regulatory mechanism of Mn-SOD expression during cerebral ischemia and reperfusion is still unclear. In this study, we identified the ... More
The N-terminus of the human RecQL4 helicase is a homeodomain-like DNA interaction motif.
Authors:Ohlenschläger O, Kuhnert A, Schneider A, Haumann S, Bellstedt P, Keller H, Saluz HP, Hortschansky P, Hänel F, Grosse F, Görlach M, Pospiech H,
Journal:Nucleic Acids Res
PubMed ID:22730300
'The RecQL4 helicase is involved in the maintenance of genome integrity and DNA replication. Mutations in the human RecQL4 gene cause the Rothmund-Thomson, RAPADILINO and Baller-Gerold syndromes. Mouse models and experiments in human and Xenopus have proven the N-terminal part of RecQL4 to be vital for cell growth. We have ... More
nalD encodes a second repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa.
Authors:Morita Y, Cao L, Gould VC, Avison MB, Poole K,
Journal:J Bacteriol
PubMed ID:17028276
The Pseudomonas aeruginosa nalD gene encodes a TetR family repressor with homology to the SmeT and TtgR repressors of the smeDEF and ttgABC multidrug efflux systems of Stenotrophomonas maltophilia and Pseudomonas putida, respectively. A sequence upstream of mexAB-oprM and overlapping a second promoter for this efflux system was very similar ... More
Functional characterization of the NfxB repressor of the mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa.
Authors:Purssell A, Poole K,
Journal:
PubMed ID:23924707
The mexCD-oprJ multidrug efflux operon of Pseudomonas aeruginosa is regulated by the NfxB repressor. Two forms of NfxB have been reported [Shiba et al. (1995). J Bacteriol 177, 5872) although mutagenesis studies here confirm that the larger protein (199 amino acids, 22.4 kDa) is the functional repressor. NfxB binds upstream ... More
Identifying cis-regulatory changes involved in the evolution of aerobic fermentation in yeasts.
Authors:Lin Z, Wang TY, Tsai BS, Wu FT, Yu FJ, Tseng YJ, Sung HM, Li WH,
Journal:Genome Biol Evol
PubMed ID:23650209
Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 ... More