Alexa Fluor™ 633 C5 Maleimide
Alexa Fluor&trade; 633 C<sub>5</sub> Maleimide
Invitrogen™

Alexa Fluor™ 633 C5 Maleimide

Alexa Fluor™ 633 is a bright, red fluorescent dye with excitation ideally suited to the 633 nm laser line. UsedRead more
Have Questions?
Catalog NumberQuantity
A203421 mg
Catalog number A20342
Price (CNY)
5,809.00
Each
Add to cart
Quantity:
1 mg
Price (CNY)
5,809.00
Each
Add to cart
Alexa Fluor™ 633 is a bright, red fluorescent dye with excitation ideally suited to the 633 nm laser line. Used for stable signal generation in imaging and flow cytometry, Alexa Fluor™ 633 dye is water soluble and pH-insensitive from pH 4 to pH 10.

The maleimide derivative of Alexa Fluor™ 633 is the most popular tool for conjugating the dye to a thiol group on a protein, oligonucleotide thiophosphate, or low molecular weight ligand. The resulting Alexa Fluor™ 633 conjugates exhibit brighter fluorescence and greater photostability than the conjugates of other spectrally similar fluorophores.

Detailed information about this AlexaFluor™ maleimide:

Fluorophore label: Alexa Fluor™ 633 dye
Reactive group: maleimide
Reactivity: thiol groups on proteins and ligands, oligonucleotide thiophosphates
Ex/Em of the conjugate: 622/640 nm
Extinction coefficient: 143,000 cm-1M-1
Molecular weight: ∼1300

Typical Conjugation Reaction
The protein should be dissolved at a concentration of 50-100 μM in a suitable buffer (10-100 mM phosphate, Tris, or HEPES) at pH 7.0-7.5. In this pH range, the protein thiol groups are sufficiently nucleophilic that they react almost exclusively with the reagent in the presence of the more numerous protein amine groups, which are protonated and relatively unreactive. We recommend reducing any disulfide bonds at this point using a 10-fold molar excess of reducing agent such as DTT or TCEP. Excess DTT must be removed by dialysis and subsequent thiol-modification should be carried out under oxygen-free conditions to prevent reformation of the disulfide bonds; these precautions are not necessary when using TCEP prior to maleimide conjugation.

The Alexa Fluor™ maleimide is typically dissolved in high-quality anhydrous dimethylsulfoxide (DMSO) at a concentration of 1-10 mM immediately prior to use, and stock solutions should be protected from light as much as possible. Generally, this stock solution is added to the protein solution dropwise while stirring to produce approximately 10-20 moles of reagent per mole of protein, and the reaction is allowed to proceed at room temperature for 2 hours or at 4°C overnight, protected from light. Any unreacted thiol-reactive reagent can be consumed by adding excess glutathione, mercaptoethanol, or other soluble low molecular weight thiol.

Conjugate Purification
Labeled antibodies are typically separated from free Alexa Fluor™ dye using a gel filtration column, such as Sephadex™ G-25, BioGel™ P-30, or equivalent. For much larger or smaller proteins, select a gel filtration media with an appropriate molecular weight cut-off or purify by dialysis. We offer several purification kits optimized for different quantities of antibody conjugate:
Antibody Conjugate Purification Kit for 0.5-1 mg (A33086)
Antibody Conjugate Purification Kit for 20-50 μg (A33087)
Antibody Conjugate Purification kit for 50-100 μg (A33088)

Learn More About Protein and Antibody Labeling
We offer a wide selection of Molecular Probes™ antibody and protein labeling kits to fit your starting material and your experimental setup. See our Antibody Labeling kits or use our Labeling Chemistry Selection Tool for other choices. To learn more about our labeling kits, read Kits for Labeling Proteins and Nucleic Acids—Section 1.2 in The Molecular Probes™ Handbook.

We’ll Make a Custom Conjugate for You
If you can’t find what you’re looking for in our online catalog, we’ll prepare a custom antibody or protein conjugate for you. Our custom conjugation service is efficient and confidential, and we stand by the quality of our work. We are ISO 13485:2000 certified.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Chemical ReactivityThiol
Emission640 nm
Excitation622 nm
Label or DyeAlexa Fluor™ 633
Product TypeDye
Quantity1 mg
Reactive MoietyMaleimide
Shipping ConditionRoom Temperature
Label TypeAlexa Fluor
Product LineAlexa Fluor
Unit SizeEach
Contents & Storage
Store in freezer (-5 to -30°C) and protect from light.

Citations & References (11)

Citations & References
Abstract
Intracellular calmodulin availability accessed with two-photon cross-correlation.
Authors:Kim SA, Heinze KG, Waxham MN, Schwille P
Journal:Proc Natl Acad Sci U S A
PubMed ID:14695888
'The availability and interactions of signaling proteins are tightly regulated in time and space to produce specific and localized effects. For calmodulin (CaM), a key transducer of intracellular Ca(2+) signaling, binding to its variety of targets initiates signaling cascades and regulates its subcellular localization, thereby making it unavailable for subsequent ... More
Specific and covalent labeling of a membrane protein with organic fluorochromes and quantum dots.
Authors:Bonasio R, Carman CV, Kim E, Sage PT, Love KR, Mempel TR, Springer TA, von Andrian UH
Journal:Proc Natl Acad Sci U S A
PubMed ID:17785425
'The real-time observation of protein dynamics in living cells and organisms is of fundamental importance for understanding biological processes. Most approaches to labeling proteins exploit noncovalent interactions, unsuitable to long-term studies, or genetic fusion to naturally occurring fluorescent proteins that often have unsatisfactory optical properties. Here we used the fungal ... More
Real-time determination of picomolar free Cu(II) in seawater using a fluorescence-based fiber optic biosensor.
Authors:Zeng HH, Thompson RB, Maliwal BP, Fones GR, Moffett JW, Fierke CA
Journal:Anal Chem
PubMed ID:14670039
We report real-time, in situ determination of free copper ion at picomolar levels in seawater using a fluorescence-based fiber optic biosensor. The sensor transducer is a protein molecule, site-specifically labeled with a fluorophore that is attached to the distal end of an optical fiber, which binds free Cu(II) with high ... More
An eight residue fragment of an acyl carrier protein suffices for post-translational introduction of fluorescent pantetheinyl arms in protein modification in vitro and in vivo.
Authors:Zhou Z, Koglin A, Wang Y, McMahon AP, Walsh CT,
Journal:J Am Chem Soc
PubMed ID:18593165
Genetically encoded tags for tracking a given protein continue to be of great interest in a multitude of in vitro and in vivo contexts. Acyl carrier proteins, both free-standing and as embedded 80-100 residue domains, contain a specific serine side chain that undergoes post-translational pantetheinylation from CoASH as donor substrate. ... More
Modulation of cell surface protein free thiols: a potential novel mechanism of action of the sesquiterpene lactone parthenolide.
Authors:Skalska J, Brookes PS, Nadtochiy SM, Hilchey SP, Jordan CT, Guzman ML, Maggirwar SB, Briehl MM, Bernstein SH,
Journal:PLoS One
PubMed ID:19956548
BACKGROUND: There has been much interest in targeting intracellular redox pathways as a therapeutic approach for cancer. Given recent data to suggest that the redox status of extracellular protein thiol groups (i.e. exofacial thiols) effects cell behavior, we hypothesized that redox active anti-cancer agents would modulate exofacial protein thiols. METHODOLOGY/PRINCIPAL ... More