Dextran, Texas Red™, 10,000 MW, Neutral
Dextran, Texas Red™, 10,000 MW, Neutral
Invitrogen™

Dextran, Texas Red™, 10,000 MW, Neutral

Labeled dextrans are hydrophilic polysaccharides most commonly used in microscopy studies to monitor cell division, track the movement of liveRead more
Have Questions?
Catalog NumberQuantity
D182825 mg
Catalog number D1828
Price (CNY)
3,893.00
Each
Add to cart
Quantity:
25 mg
Price (CNY)
3,893.00
Each
Add to cart
Labeled dextrans are hydrophilic polysaccharides most commonly used in microscopy studies to monitor cell division, track the movement of live cells, and to report the hydrodynamic properties of the cytoplasmic matrix. The labeled dextran is commonly introduced into the cells via microinjection.

Need a different emission spectrum or longer tracking? View our other mammalian cell tracking products.

Dextran Specifications:

Label (Ex/Em): Texas Red™ (595/615)
Size: 10,000 MW
Charge: Zwitterionic
Fixable: Nonfixable

High Manufacturing Standards of Molecular Probes™ Dextrans
We offer more than 50 fluorescent and biotinylated dextran conjugates in several molecular weight ranges. Dextrans are hydrophilic polysaccharides characterized by their moderate-to-high molecular weight, good water solubility, and low toxicity. They also generally exhibit low immunogeniticy. Dextrans are biologically inert due to their uncommon poly-(α-D-1,6-glucose) linkages, which render them resistant to cleavage by most endogenous cellular glycosidases.

In most cases, Molecular Probes™ fluorescent dextrans are much brighter and have higher negative charge than dextrans available from other sources. Furthermore, we use rigorous methods for removing as much unconjugated dye as practical, and then assay our dextran conjugates by thin-layer chromatography to help ensure the absence of low molecular weight contaminants.

A Wide Selection of Substituents and Molecular Weights
Molecular Probes™ dextrans are conjugated to biotin or a wide variety of fluorophores, including seven of our Alexa Fluor™ dyes (Molecular Probes dextran conjugates–Table 14.4) and are available in these nominal molecular weights (MW): 3,000; 10,000; 40,000; 70,000; 500,000; and 2,000,000 daltons.

Dextran Net Charge and Fixability
We employ succinimidyl coupling of our dyes to the dextran molecule, which, in most cases, results in a neutral or anionic dextran. The reaction used to produce the Rhodamine Green™ and Alexa Fluor 488 dextrans results in the final product being neutral, anionic, or cationic. The Alexa Fluor, Cascade Blue, lucifer yellow, fluorescein, and Oregon Green dextrans are intrinsically anionic, whereas most of the dextrans labeled with the zwitterionic rhodamine B, tetramethylrhodamine, and Texas Red™ dyes are essentially neutral. To produce more highly anionic dextrans, we have developed a proprietary procedure for adding negatively charged groups to the dextran carriers; these products are designated “polyanionic” dextrans.

Some applications require that the dextran tracer be treated with formaldehyde or glutaraldehyde for subsequent analysis. For these applications, we offer “lysine-fixable” versions of most of our dextran conjugates of fluorophores or biotin. These dextrans have covalently bound lysine residues that permit dextran tracers to be conjugated to surrounding biomolecules by aldehyde-mediated fixation for subsequent detection by immunohistochemical and ultrastructural techniques. We have also shown that all of our 10,000 MW Alexa Fluor dextran conjugates can be fixed with aldehyde-based fixatives.

Key Applications Using Labeled Dextrans
There are a multitude of citations describing the use of labeled dextrans. Some of the most common uses include:

Neuronal tracing (anterograde and retrograde) in live cells
Cell lineage tracing in live cells
Neuroanatomical tracing
Examining intercellular communications (e.g., in gap junctions, during wound healing, and during embryonic development)
Investigating vascular permeability and blood–brain barrier integrity
Tracking endocytosis
Monitoring acidification (some dextran–dye conjugates are pH-sensitive)
Studying the hydrodynamic properties of the cytoplasmic matrix

For Research Use Only. Not intended for any animal or human therapeutic or diagnostic use.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Label or DyeClassic Dyes
Product TypeDextran
Quantity25 mg
Shipping ConditionRoom Temperature
Excitation/Emission595/615 nm
Product LineTexas Red
Unit SizeEach
Contents & Storage
Store in freezer (-5 to -30°C) and protect from light.

Citations & References (110)

Citations & References
Abstract
Selective cell targeting with light-absorbing microparticles and nanoparticles.
Authors:Pitsillides CM, Joe EK, Wei X, Anderson RR, Lin CP
Journal:Biophys J
PubMed ID:12770906
'We describe a new method for selective cell targeting based on the use of light-absorbing microparticles and nanoparticles that are heated by short laser pulses to create highly localized cell damage. The method is closely related to chromophore-assisted laser inactivation and photodynamic therapy, but is driven solely by light absorption, ... More
GPCR signaling is required for blood-brain barrier formation in drosophila.
Authors:Schwabe T, Bainton RJ, Fetter RD, Heberlein U, Gaul U,
Journal:Cell
PubMed ID:16213218
'The blood-brain barrier of Drosophila is established by surface glia, which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions. The mechanisms underlying the formation of this barrier remain obscure. Here, we show that the G protein-coupled receptor (GPCR) Moody, the G protein ... More
Plasma membrane repair is mediated by Ca(2+)-regulated exocytosis of lysosomes.
Authors:Reddy A, Caler EV, Andrews NW
Journal:Cell
PubMed ID:11511344
'Plasma membrane wounds are repaired by a mechanism involving Ca(2+)-regulated exocytosis. Elevation in intracellular [Ca(2+)] triggers fusion of lysosomes with the plasma membrane, a process regulated by the lysosomal synaptotagmin isoform Syt VII. Here, we show that Ca(2+)-regulated exocytosis of lysosomes is required for the repair of plasma membrane disruptions. ... More
Nuclear import of insulin-like growth factor-binding protein-3 and -5 is mediated by the importin beta subunit.
Authors:Schedlich LJ, Le Page SL, Firth SM, Briggs LJ, Jans DA, Baxter RC
Journal:J Biol Chem
PubMed ID:10811646
'Although insulin-like growth factor-binding protein (IGFBP)-3 and IGFBP-5 are known to modulate cell growth by reversibly sequestering extracellular insulin-like growth factors, several reports have suggested that IGFBP-3, and possibly also IGFBP-5, have important insulin-like growth factor-independent effects on cell growth. These effects may be related to the putative nuclear actions ... More
Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C.
Authors:Amyere M, Payrastre B, Krause U, Van Der Smissen P, Veithen A, Courtoy PJ
Journal:Mol Biol Cell
PubMed ID:11029048
'Macropinocytosis results from the closure of lamellipodia generated by membrane ruffling, thereby reflecting cortical actin dynamics. Both transformation of Rat-1 fibroblasts by v-Src or K-Ras and stable transfection for expression of dominant-positive, wild-type phosphoinositide 3-kinase (PI3K) regulatory subunit p85 alpha constitutively led to stress fiber disruption, cortical actin recruitment, extensive ... More