查找有价值的信息。

我们总结了一系列要点提示和技巧并建立了一个详细的知识库,以满足您的各类科研需求,助您优化试验,获得最理想的结果。

浏览下列相关问题答疑:

载体特性

An ori, or origin of replication, is the sequence where replication is initiated. The ori determines the vector copy number. For example, a pUC ori produces a high copy number, whereas a pBR322 ori produces a low copy number. An ori is necessary for replication in bacteria.

The pCR™II vector is a dual promoter vector: it contains a T7 promoter at the 5' end of the multiple cloning site and an Sp6 promoter at the 3' end. The pCR™2.1 vector only contains the T7 promoter (the Sp6 promoter was removed). Having a dual promoter vector is only of advantage if you want to do in vitro transcription studies with your insert. In terms of cloning efficiency, there is no difference between the pCR™2.1 and the pCR™II vectors. Both the pCR™2.1 and the pCR™II vectors contain sequencing primer sites (M13 primer sites) to sequence your insert in both directions.

TA Cloning

This cloning method was designed for use with pure Taq polymerases (native, recombinant, hot start); however, High Fidelity or Taq blends generally work well with TA cloning. A 10:1 or 15:1 ratio of Taq to proofreader polymerase will still generate enough 3’ A overhangs for TA cloning.

Recommended polymerases include Platinum™ Taq, Accuprime™ Taq, Platinum™ or Accuprime™ Taq High Fidelity, AmpliTaq™, AmpliTaq Gold™, or AmpliTaq Gold™ 360.

Blunt Cloning

Use a proofreading enzyme such as Platinum™ SuperFi™ DNA Polymerase..

Directional TOPO Cloning

Platinum™ SuperFi™ DNA Polymerase works well.

T4 DNA polymerase and Klenow fragment of E. coli DNA polymerase can both convert overhangs to blunt molecules. The 3’ – 5’ exonuclease activity of the T4 DNA polymerase is much more efficient than Klenow.

CIP/CIAP or BAP can dephosphorylate the 5’ ends of DNA/RNA. T4 Polynucleotide Kinase can add back phosphate groups.

Prokaryotic mRNAs contain a Shine-Dalgarno sequence, also known as a ribosome binding site (RBS), which is composed of the polypurine sequence AGGAGG located just 5’ of the AUG initiation codon. The Shine-Dalgarno sequence allows the message to bind efficiently to the ribosome due to its complementarity with the 3’-end of the 16S rRNA.

Eukaryotic (and specifically mammalian) mRNA contains sequence information that is important for efficient translation. However, this sequence, termed a Kozak sequence, is not a true ribosome binding site, but rather a translation initiation enhancer. The Kozak consensus sequence is ACCAUGG, where AUG is the initiation codon. A purine (A/G) in position -3 has a dominant effect; with a pyrimidine (C/T) in position -3, translation becomes more sensitive to changes in positions -1, -2, and +4. Expression levels can be reduced up to 95% when the -3 position is changed from a purine to pyrimidine. The +4 position has less influence on expression levels where approximately 50% reduction is seen. See the following references:

Note: The optimal Kozak sequence for Drosophila differs slightly, and yeast do not follow this rule at all. See the following references:

 

Prokaryotic mRNAs contain a Shine-Dalgarno sequence, also known as a ribosome binding site (RBS), which is composed of the polypurine sequence AGGAGG located just 5’ of the AUG initiation codon. The Shine-Dalgarno sequence allows the message to bind efficiently to the ribosome due to its complementarity with the 3’-end of the 16S rRNA. Similarly, eukaryotic (and specifically mammalian) mRNA also contains sequence information that is important for efficient translation. However, this sequence, termed a Kozak sequence, is not a true ribosome binding site, but rather a translation initiation enhancer. The Kozak consensus sequence is ACCAUGG, where AUG is the initiation codon. A purine (A/G) in position -3 has a dominant effect; with a pyrimidine (C/T) in position -3, translation becomes more sensitive to changes in positions -1, -2, and +4. Expression levels can be reduced up to 95% when the -3 position is changed from a purine to pyrimidine. The +4 position has less influence on expression levels where approximately 50% reduction is seen. See the following references:

Note: The optimal Kozak sequence for Drosophila differs slightly, and yeast do not follow this rule at all. See the following references:

 

ATG is often sufficient for efficient translation initiation although it depends upon the gene of interest. The best advice is to keep the native start site found in the cDNA unless one knows that it is not functionally ideal. If concerned about expression, it is advisable to test two constructs, one with the native start site and the other with a Shine Dalgarno sequence/ribosome binding site (RBS) or consensus Kozak sequence (ACCAUGG), as the case may be. In general, all expression vectors that have an N-terminal fusion will already have a RBS or initiation site for translation.

 

An IRES is an internal ribosome entry site, which allows for end-independent initiation of translation. Researchers typically include an IRES when cloning two or more genes and wish them to be expressed with the same promoter.

Transcription is stopped by a termination sequence that follows your gene of interest. Some examples of transcriptional terminators are:

  • E. coli: T7 terminator
  • Yeast: AOX and CYC1 terminators
  • Insect: SV40 terminator
  • Mammalian: SV40 and BGH polyA
  • Viral: 3’ LTR

Epitope tags are typically included to allow for easy detection or rapid purification of your gene of interest by fusing the tag with your gene of interest. Epitope tags can be on either the N- terminus or C-terminus of your gene of interest. Here are some considerations to take into account when using an epitope tag:

  1. N-terminal tags may have protease cleavage sites.
  2. N-terminal tags have RBS/Kozak included.
  3. Secretion signals are always N-terminal and are automatically cleaved off during Golgi processing.
  4. Replace native secretion signal if present in GOI.
  5. Choose an N-terminal tag when the C-terminus of the protein is important for function.
  6. Ensure that a STOP codon is present at the end of your gene of interest when working with an N-terminal tag.
  7. If including an N-terminal tag, ensure that your gene is in frame with the tag.
  8. Choose a C-terminal tag when the N-terminus of the protein is important for function or if the protein is uncharacterized.
  9. Make sure to omit the STOP codon from your gene of interest for fusion with C-terminal tags; a STOP codon is present at the end of the C-terminal tag.
  10. Make sure to include your start codon (ATG) as well as a RBS/Kozak if needed at the start of your gene of interest when working with C-terminal tags.
  11. If including a C-terminal tag, ensure that the tag is in frame with your gene of interest.

Here are some basic guidelines to help you select an epitope tag:

PurposeDescriptionExample of tag
DetectionWell-characterized antibody available against the tag Easily visualizedV5, Xpress, myc, 6XHis, GST, BioEase, capTEV GFP, Lumio
PurificationResins available to facilitate purification6XHis, GST, BioEase, capTEV
CleavableProtease recognition site (TEV, EK) to remove tag after expression to get native proteinAny tag with a protease recognition site following the tag (only on N-terminus)

 

An expression vector typically contains the following elements:

  • Gene of interest expression cassette (including promoter-gene-termination or poly A signal)
  • Antibiotic selection cassette for particular host
  • Antibiotic selection cassette for E. coli
  • Bacterial origin of replication

Additional elements include:

  • Cloning site
  • Epitope tags
  • Secretion signal (at N-terminus)

No, these vectors do not contain a functional promoter to express your gene of interest. These vectors are typically for subcloning or sequencing.

ExpressLink™ T4 DNA Ligase allows for faster ligation times and ligation at room temperature. For TA cloning, the ligation time is 15 minutes while the original T4 DNA Ligase needs a minimum of 4 hours to overnight for incubation. For blunt cloning, the ligation time with ExpressLink™ T4 DNA Ligase is reduced to 5 minutes from the 1 hour it takes with T4 DNA Ligase. The performance of these two ligases is similar, with an 80% cloning efficiency with our control PCR inserts using the above mentioned minimum ligation incubation times/temperatures.

Ligation

It depends on your application. For ligation of dsDNA fragments with cohesive ends, either enzyme can be used. E. coli DNA Ligase requires the presence of β-NAD, while T4 DNA Ligase requires ATP. However, only T4 DNA Ligase can join blunt-ended DNA fragments; E. coli Ligase is unable to join such fragments.

E. coli DNA Ligase is generally used to eliminate nicks during second-strand cDNA synthesis. T4 DNA Ligase should not be substituted for E. coli DNA Ligase in second-strand synthesis because of its capability for blunt end ligation of the ds cDNA fragments, which could result in formation of chimeric inserts.

You may have to try different ratios from 1:1 to 15:1 insert:vector.

Equation:

formula-r3

At least one molecule in a ligase reaction (i.e., insert or vector) must be phosphorylated. Ligation reactions are dependent on the presence of a 5' phosphate on the DNA molecules. The ligation of a dephosphorylated vector with an insert generated from a restriction enzyme digest (phosphorylated) is most routinely performed. Although only one strand of the DNA ligates at a junction point, the molecule can form a stable circle, providing that the insert is large enough for hybridization to maintain the molecule in a circular form.

Recommendations vary depending on the size of the vector and insert or the nature of the insert, but for most plasmid cloning or subcloning reactions, a vector concentration of 1-10 ng/µl is recommended. Inserts should generally be 2- to 3-fold excess in molar concentration relative to the vector.

Screening

If working with a vector that contains the lac promoter and the LacZ α fragment (for α complementation), blue/white screening can be used as a tool to select for presence of the insert. X-gal is added to the plate as a substrate for the LacZ enzyme and must always be present for blue/white screening. The minimum insert size needed to completely disrupt the LacZ gene is 400 bp. If the LacIq repressor is present (either provided by the host cells, for example TOP10F', or expressed from the plasmid) it will repress expression from the lac promoter, thus preventing blue/white screening. Hence in the presence of the LacIq repressor, IPTG must be provided to inhibit the LacIq. Inhibition of LacIq permits expression from the lac promoter for blue/white screening. X-gal (also known as 5-bromo-4-chloro-3-indolyl β-D-glucopyranoside) is soluble in DMSO or DMF, and can be stored in solution in the freezer for up to 6 months. Protect the solution from light. Final concentration of X-gal and IPTG in agar plates: Prior to pouring plates, add X-gal to 20 mg/mL and IPTG to 0.1 mM to the medium. When adding directly on the surface of the plate, add 40 µl X-gal (20 mg/mL stock) and 4 µl IPTG (200 mg/mL stock).

TOPO® vectors containing the LacZ-ccdB cassette allow direct selection of recombinants via disruption of the lethal E. coli gene, ccdB. Ligation of a PCR product disrupts expression of the LacZ-ccdB gene fusion permitting growth of only positive recombinants upon transformation. Cells that contain non-recombinant vector are killed upon plating. Therefore, blue/white screening is not required. When doing blue/white color screening of clones in TOPO® vectors containing the LacZ-ccdB cassette, colonies showing different shades of blue may be observed. It is our experience that those colonies that are light blue as well as those that are white generally contain inserts. The light blue is most likely due to some transcription initiation in the presence of the insert for the production of the lacZ α without enough ccdB expressed to kill the cells and is insert dependent. To completely interrupt the lacZ gene, inserts must be >400 bp; therefore an insert of 300 bp can produce a light blue colony. A white colony that does not contain an insert is generally due to a spontaneous mutation in the ccdB gene.

A minimum insertion of 150 bp is needed in order to ensure disruption of the ccdB gene and prevent cell death. (Reference: Bernard et al., 1994. Positive-selection vectors using the F plasmid ccdB killer gene. Gene 148: 71-74.)

Strains that contain an F plasmid, such as TOP10F’, are not recommended for transformation and selection of recombinant clones in any TOPO® vector containing the ccdB gene. The F plasmid encodes the ccdA protein, which acts as an inhibitor of the ccdB gyrase-toxin protein. The ccdB gene is also found in the ccd (control of cell death) locus on the F plasmid. This locus contains two genes, ccdA and ccdB, which encode proteins of 72 and 101 amino acids respectively. The ccd locus participates in stable maintenance of F plasmid by post-segregational killing of cells that do not contain the F plasmid. The ccdB protein is a potent cell-killing protein when the ccdA protein does not inhibit its action.

If working with a vector that contains the lac promoter and the LacZ α fragment (for α complementation), blue/white screening can be used as a tool to select for presence of the insert. X-gal is added to the plate as a substrate for the LacZ enzyme and must always be present for blue/white screening. The minimum insert size needed to completely disrupt the lacZ gene is 400 bp. If the LacIq repressor is present (either provided by the host cells, for example TOP10F', or expressed from the plasmid), it will repress expression from the lac promoter thus preventing blue/white screening. Hence, in the presence of the LacIq repressor, IPTG must be provided to inhibit the LacIq. Inhibition of LacIq permits expression from the lac promoter for blue/white screening.


ori是复制起点,即复制起始处的序列。它决定了载体拷贝数。例如,pUCori可产生高拷贝数,而pBR322 ori则可产生低拷贝数。ori是质粒在细菌中复制所必需的。

pCR™II载体是一种双启动子载体,它在多克隆位点的5’端和3’端分别具有一个T7启动子和Sp6启动子。pCR™2.1载体只含有T7启动子(去除了Sp6启动子)。如果想使用插入片段做体外转录研究,使用双启动子载体更有优势。从克隆效率来看,pCR™2.1和pCR™II载体没有区别。pCR™2.1和pCR™II载体均含有测序引物位点(M13引物位点),从而可以沿两个方向对插入片段进行测序。

TA克隆

这种克隆方法最初是为配合纯Taq聚合酶(天然的、重组的、热启动)使用而设计的;然而,某些高保真Taq酶和Taq酶混合物通常也适合TA克隆。即使Taq与具有校正能力的聚合酶以10:1或15:1的比例,仍可以产生足够的3’ A突出端去做TA克隆。

推荐使用的我公司的聚合酶包括Platinum Taq、Accuprime™ Taq、Platinum或Accuprime™ Taq High Fidelity、AmpliTaq、AmpliTaq Gold或AmpliTaq Gold 360等。

平末端克隆

使用Pfx50、Platinum或Accuprime Pfx等具有校对能力的酶。

定向TOPO克隆

Pfx50或AccuPrime™ Pfx效果良好。

T4 DNA聚合酶和大肠杆菌DNA聚合酶的Klenow片段,均可将突出端分子转变成平末端分子。但T4 DNA聚合酶的3’—5’核酸外切酶活性比Klenow更强。

CIP/CIAP 或BAP可以对DNA/RNA的5’端去磷酸化;T4多核苷酸激酶可以添加磷酸基团。

原核生物mRNA含有Shine-Dalgarno序列,也称为核糖体结合位点(RBS),它是由AUG起始密码子5’端的多嘌呤序列AGGAGG组成。该序列与16S rRNA 3’端的互补,有助于mRNA有效结合到核糖体上。同理,真核生物(特别是哺乳动物)mRNA也含有完成有效翻译所需的重要序列信息。然而,Kozak序列不是真正的核糖体结合位点,而是一种翻译起始增强子。Kozak共有序列是ACCAUGG,其中AUG是起始密码子。-3位的嘌呤(A/G)具有重要作用;若-3位是一个嘧啶(C/T),翻译过程会对-1、-2和+4位的改变更敏感。当-3位从嘌呤变为嘧啶时,可使表达水平降低多达95%。+4位对表达水平的影响相对较小,可以使表达水平降低约50%。

注:果蝇的最佳Kozak序列稍有不同,酵母完全不遵循这些规则。见下列参考文献:

  • Foreign Gene Expression in Yeast: a Review. Yeast, vol. 8, p. 423-488 (1992).
  • Caveneer, Nucleic Acids Research, vol. 15, no. 4, p. 1353-1361 (1987).

ATG通常足够启动有效的翻译,尽管翻译也取决于目标基因。最好的建议是,沿用在cDNA中发现的天然起始位点,除非确定该位点在功能上不理想。如果担心表达的不好,建议测试两种设计,一种使用天然起始位点,另一种使用共有Kozak序列。一般来说,所有具有N端融合的表达载体,都会具有一个翻译的RBS或起始位点。

IRES是内部核糖体进入位点,可使翻译起始不依赖于末端。研究人员通常在克隆2个或更多基因时会使用IRES,以期这些基因能够在同一个启动子下表达。

目标基因末端的终止序列可以使转录终止。转录终止子的实例如下:

  • 大肠杆菌:T7终止子
  • 酵母:AOX和CYC1终止子
  • 昆虫:SV40终止子
  • 哺乳动物:SV40和BGH polyA
  • 病毒:3’ LTR

通过将标签与目标基因融合表达,可以利用标签对目标基因进行检测或快速纯化。标签可加在目标基因的N端或C端。以下是使用标签时的注意事项:

  1. N端标签可以含有蛋白酶切割位点。
  2. N端标签包含RBS/Kozak位点。
  3. 分泌信号通常是加在N端的,在高尔基体内加工过程中会被自动切割
  4. 替代GOI中存在的天然分泌信号。
  5. 当C端对蛋白质功能很重要时,应选择N端标签
  6. 使用N端标签时,应确保目标基因的末端具有一个终止密码子。
  7. 如果使用N端标签,应确保您的基因与标签基因在同一个读码框内。
  8. 如果N端对蛋白质功能很重要或蛋白是未鉴定过的,应选择C端标签。
  9. 如果要将您的目的基因和C末端标签基因进行融合表达,确保删除您的目标基因中的终止密码子;终止密码子应该存在于标签基因的C端。
  10. 使用C端标签时,应确保目标基因含有起始密码子(ATG),如果需要的话还要加上RBS/Kozak位点。
  11. 如果使用C端标签,应确保标签与您的基因在同一个读码框内。

以下是帮助您选择标签的一些基本原则:

目的 描述 标签实例
检测 该标签的抗体性能明确,方便可视化 V5, Xpress, myc, 6XHis, GST, BioEase, capTEV GFP, Lumio
纯化 有可用的树脂方便后续蛋白纯化 6XHis, GST, BioEase, capTEV
可切割性 具有蛋白酶识别位点(TEV、EK),在表达后可以切除标签,获得天然蛋白 任何后面(仅限N端标签)带有蛋白酶识别位点的标签

一个表达载体通常包含以下要素:

  • 目的基因表达框(包括启动子-基因-终止信号或poly A信号)
  • 针对特定宿主的筛选用的抗生素元件
  • 针对大肠杆菌的筛选用的抗生素元件
  • 细菌复制起点

其他要素包括:

  • 克隆位点
  • 标签
  • 分泌信号(N端)

不可以,这些载体不包含功能性启动子以表达您的目的基因。这些载体通常用于亚克隆或测序。

ExpressLink™ T4 DNA连接酶可以缩短连接时间,并实现室温下连接。对于TA克隆,该酶的连接时间为15分钟,而原始T4 DNA连接酶需要孵育至少4小时至过夜。对于平末端克隆,使用ExpressLink™ T4 DNA连接酶的连接时间为5分钟,而使用T4 DNA连接酶需要1小时。当使用我们的对照PCR插入片段和上述最低连接孵育时间/温度时,这两种酶的性能相似,克隆效率为80%。

连接

这取决于您的应用。对于含有黏性末端的双链DNA片段之间的连接,两种酶都能使用。大肠杆菌DNA连接酶需要β-NAD存在,而T4 DNA连接酶需要ATP。然而,只有T4 DNA连接酶可以连接平末端DNA片段;大肠杆菌连接酶不可用于这类片段的连接。

大肠杆菌DNA连接酶通常用于第二链cDNA合成中修复缺口。在第二链cDNA合成中,T4 DNA连接酶不可代替大肠杆菌DNA连接酶,因为T4 DNA连接酶对平末端ds cDNA片段连接的功能,可能导致形成嵌合插入。

您可能需要尝试不同的插入片段:载体比例,范围从1:1至15:1。

公式:

Formula

(插入片段长度 (bp) X 载体重量(ng) ) / 载体长度 (bp) = 插入片段:载体比例为1:1时所需的插入片段重量(ng)

在一个连接反应中,至少有一个分子(例如插入片段或载体)必须是磷酸化的。连接反应取决于DNA分子上5’磷酸的存在。去磷酸化载体与限制性内切酶消化生成的插入片段(磷酸化的)结合,是最常见的方式。尽管DNA只有一条链可连接在接合点,但是也可形成稳定环状结构的分子,前提条件是插入片段足够长,双链杂交产生的力量能够维持分子的环状结构。

推荐浓度取决于载体和插入片段的大小或插入片段的性质,但对于大多数质粒克隆或亚克隆反应来说,推荐的载体浓度为1-10 ng/µl。插入片段的摩尔浓度通常超过载体的2倍或3倍。

筛选

如果使用包含lac启动子和LacZ α片段(用于α互补)的载体,蓝/白筛选可作为筛选插入片段是否存在的工具。X-gal作为LacZ酶的底物需要加到反应板中,是蓝/白斑筛选必需的。完全破坏LacZ基因表达所需的最小插入片段大小为400 bp。如果存在Laclq抑制子(来自宿主细胞,如TOP10F',或由质粒表达),它将抑制lac启动子介导的表达,从而阻碍蓝/白筛选。因此,当存在Laclq抑制子时,必须使用IPTG抑制Laclq。只有抑制了Laclq,才能实现蓝/白筛选中的lac启动子介导的表达。X-gal(也称为5-溴-4氯-3-吲哚-β-D-半乳糖苷)可溶于DMSO或DMF,其溶液形式可在冰箱中储存长达6个月。溶液需避光保存。X-gal和IPTG在琼脂板中的终浓度:倾注平板前,在培养基中加入X-gal至终浓度20 mg/mL,IPTG 加至终浓度0.1 mM。若直接涂在反应板表面,则加入40 µl X-gal (20 mg/mL储液)和4 µl IPTG (200 mg/mL储液)。

含有LacZ-ccdB表达框的TOPO载体,可通过破坏对大肠杆菌致死的基因ccdB的表达而直接筛选重组体。PCR产物的连接,可破坏LacZ-ccdB融合基因的表达,从而仅允许转化所得的阳性重组体生长,而含有非重组载体的细胞则将死亡。因此,无需蓝/白筛选。对含有LacZ-ccdB表达框的TOPO载体的克隆进行蓝/白筛选时,可看见菌落呈现不同的蓝色阴影。根据我们的经验,浅蓝色和白色的菌落通常含有插入片段。浅蓝色克隆的形成是由于在有插入片段的情况下发生了部分LacZ基因的转录但ccdB的表达没有达到杀死细胞的水平,这是和插入片段有关的。为了完全破坏lacZ基因的表达,插入片段必须>400 bp;因此,一个300 bp的插入片段可产生浅蓝色菌落。出现不含插入片段的白色菌落,通常是因为ccdB基因的自发性突变。

为了确保破坏ccdB基因表达,防止细胞死亡,需要的插入片段最小为150 bp。(参考文献:Bernard et al., 1994. Positive-selection vectors using the F plasmid ccdB killer gene. Gene 148: 71-74.)

含F质粒的菌株,如TOP10F’,不推荐用于转化和筛选任何含ccdB基因的TOPO载体的重组克隆。F质粒可编码ccdA蛋白,一种ccdB旋转酶-毒素蛋白的抑制剂。ccdB基因也存在于F质粒的ccd(细胞死亡控制)位点。该位点含2个基因,ccdA和ccdB,可分别编码含72和101个氨基酸的蛋白。ccd位点通过杀死分裂后不含F质粒的细胞而维持F质粒的稳定性的。当ccdA蛋白不发挥抑制作用时,ccdB蛋白是一种强力的可以杀死细胞的蛋白。

如果使用包含lac启动子和LacZ α片段(用于α互补)的载体,蓝/白筛选可作为筛选插入片段是否存在的工具。X-gal作为LacZ酶的底物需要加到反应板中,是蓝/白斑筛选必需的。完全破坏LacZ基因表达所需的最小插入片段大小为400 bp。如果存在Laclq抑制子(来自宿主细胞,如TOP10F',或由质粒表达),它将抑制lac启动子介导的表达,从而阻碍蓝/白筛选。因此,当存在Laclq抑制子时,必须使用IPTG抑制Laclq。只有抑制了Laclq,才能实现蓝/白筛选中的lac启动子介导的表达