Q Exactive™ BioPharma 平台
Q Exactive™ BioPharma 平台
Actual product may vary
Q Exactive™ BioPharma 平台
Q Exactive™ BioPharma 平台
Thermo Scientific™

Q Exactive™ BioPharma 平台

Q Exactive BioPharma质谱仪提供卓越的完整分析和亚单位自上/中而下分析,Orbitrap质量分析仪提供肽图谱分析。

Have Questions?
更改视图buttonViewtableView
货号扫描速率分辨率质量范围
0726055最高 12 Hzm/z 200处为280,00050 至 8000 m/z
0726060最高 18 Hz240,000(m/z 200时)50 至 8,000 m/z
货号 0726055
价格(CNY)
-
扫描速率:
最高 12 Hz
分辨率:
m/z 200处为280,000
质量范围:
50 至 8000 m/z

借助于 Thermo Scientific™ Q Exactive™ BioPharma平台实现生物大分子药物的完整表征。该平台提供了针对前三种蛋白质表征工作流程进行优化的独特运行模式:

  • 高质量范围模式在非变性条件和变性条件下实现最佳的完整蛋白质分析,提供最高质量的光谱。
  • 蛋白质模式确保了亚单位的同位素分辨率,并便于进行自上/中而下的测序。
  • 标准模式以无与伦比的采集速度、极佳的质量准确度和卓越的光谱质量执行肽图谱分析。

Thermo Scientific™ Q Exactive™ Plus 和 Q Exactive™ HF 混合四极杆-Orbitrap™ 质谱仪为功能最强大的台式肽图谱分析仪增添了卓越的变性和非变性 MS 完整分析以及亚单位自上/中而下分析功能。当与 Thermo Scientific™ BioPharma Finder™ 软件结合时,其将为 BioPharma 表征提供一整套集成的软硬件解决方案。

Thermo Scientific™ Q Exactive™ BioPharma 平台提供了针对前三种蛋白质表征工作流程进行优化的独特运行模式:

  • 高质量范围(HMR)模式专为完整的治疗性蛋白质工作流程而设计,以提供所需的易用性。已针对变性条件下所执行的常规完整单克隆抗体分析以及理想用于抗体药物偶联物(ADC)和其他均相抗体样本的非变性 MS 分析对 HMR 模式进行了优化。
  • Q Exactive HF 的蛋白质模式是一种功能强大的组合,设立了台式质谱仪所能达到的最高质量同位素解析数据的标准。利用 Thermo Scientific™ BioPharma Finder™ 软件,亚单位 MS 光谱的解卷积工作变得简单易行且高效。
  • 具有标准模式的肽图谱是 Q Exactive BioPharma 的最新技术,它是数十载数据依赖性采集(DDA)开发领域的巅峰之作。
规格
动态范围>5000:1
质量准确度内部:<1 ppm RMS,外部:<3 ppm RMS(在规定的条件下)
极性切换<1 秒一个完整周期(一次全正离子模式扫描和一次全负离子模式扫描,分辨率设置为35,000)
扫描速率最高 12 Hz
灵敏度全扫描 MS:柱上 500fg 丁螺环酮 S/N 100:1
SIM:柱上 30fg 丁螺环酮 S/N 100:1
质量范围50 至 8000 m/z
分辨率m/z 200处为280,000
类型生物制药平台
Unit SizeEach

常见问题解答 (FAQ)

Why is the turbomolecular pump not operating when using Orbitrap Exactive or Q Exactive mass spectrometry instruments?

A turbomolecular pump may be switched off because of one of the following reasons:

- Turbomolecular pump is blocked
- Failure of fans in turbomolecular pump
Each of the above reasons might lead to an overheating of the pump. When overheated, a turbomolecular pump switches off automatically to prevent its destruction. This overheating protection prevents the outbreak of a fire and minimizes the risk of destructing the pump.

If the Exactive Series mass spectrometer does not work as expected, use the Tune software for error diagnosis:
- The instrument status window displays real-time status information for the instrument components. All parameters are arranged in a tree view. In addition to showing numerical values of parameters (for example, pump speeds or component temperatures), the instrument status window uses icons to indicate the statuses of system components.
- The messages window displays real-time information about the statuses of the instrument, the control service, or other programs. It might display additional information.

In case of an overheated turbomolecular pump, shut down the mass spectrometer as described on page 6-8 of the manual (https://assets.thermofisher.com/TFS-Assets/CMD/manuals/man-bre0012255-exactive-series-manbre0012255-en.pdf). To prevent permanent damage to components of the Exactive Series mass spectrometer, Thermo Fisher Scientific recommends that you call a Thermo Fisher Scientific field service engineer.

Find additional tips, troubleshooting help, and resources within our Mass Spectrometry Support Center.

Why is the temperature of UHV chamber higher than expected when using Orbitrap Exactive or Q Exactive mass spectrometry instruments?

The UHV chamber heating control may have failed. During general operation of the mass spectrometer, the temperature of the UHV chamber is not regulated. Only during a system bakeout, electric power is supplied to the heating elements of the UHV chamber. The heating always operates at maximum power. Thus, failure of the heating control does not lead to a dangerous overheating of the mass spectrometer. If the Exactive Series mass spectrometer does not work as expected, use the Tune software for error diagnosis:

- The messages window displays real-time information about the statuses of the instrument, the control service, or other programs. If the heating was terminated, the window displays a corresponding error message.

In case of a failure of the UHV chamber heating control, shut down the mass spectrometer as described on page 6-8 of the manual (https://assets.thermofisher.com/TFS-Assets/CMD/manuals/man-bre0012255-exactive-series-manbre0012255-en.pdf). To prevent permanent damage to components of the Exactive Series mass spectrometer, Thermo Fisher Scientific recommends that you call a Thermo Fisher Scientific field service engineer.

Find additional tips, troubleshooting help, and resources within our Mass Spectrometry Support Center.

When using Orbitrap Exactive or Q Exactive mass spectrometry instruments, why does the tune software show bad vacuum?

Here are possible causes and solutions:
-System was vented because of a main power failure: A main power failure has the same consequence as switching off with the main power circuit breaker switch. If the power is available again, the system is started up automatically: the pumps are switched on and the vacuum is created. If the system has been vented during the mains failure, it is necessary to bake out the system to obtain the operating vacuum. See “Baking Out the System” on page 8-12 of the manual. If the log file of the data system shows a reboot of the system and the pressure reading in the Tune software shows a bad vacuum, this indicates that the system was vented. In case of frequent but short power failures, we recommend that you install an uninterruptible power supply (UPS). If main power failures occur frequently while the system is not attended (for example, in the night), we recommend that you install a power fail detector. - Vacuum leak: Refer to pages 7-5 and 8-12 in the Operator's Manual (https://assets.thermofisher.com/TFS-Assets/CMD/manuals/man-bre0012255-exactive-series-manbre0012255-en.pdf).

Find additional tips, troubleshooting help, and resources within our Mass Spectrometry Support Center.

Why does the metal needle insert in the heated ESI probe frequently clog when using Orbitrap Exactive or Q Exactive mass spectrometry instruments?

Clogging of the H-ESI spray needle is generally caused by the presence of non-volatile components in the injected samples. If the non-volatile components of the samples are not removed during sample preparation, they will be injected onto the column where they will gradually bleed off over time into the detector. They may also be directly introduced by the use of non-volatile buffers in the mobile phase. Non volatile buffers should be avoided in LC-MS analysis because the spray needle will clog frequently and in addition the MS optics will quickly become contaminated.

Clogging issues may be worsened when using a divert valve or bypass valve. This is because when the valve switches to waste the LC flow to the needle is stopped, causing the residual liquid in the hot needle to quickly evaporate. This in turn causes the non-volatile components to deposit on the inner wall of the tubing which will eventually clog it.

When using a divert or bypass valve, the issue may be fully resolved by adding another HPLC pump to supply make-up flow through the needle when the column eluent is bypassed. The second pump is connected to the divert valve or bypass valve so that when the eluent is diverted to waste, clean solvent flows through the needle to help keep it clean. Alternatively, sample preparation procedures should be modified to reduce the amount of non-volatile components in each sample injection.

Find additional tips, troubleshooting help, and resources within our Mass Spectrometry Support Center.

What is High Energy Collision Dissociation (HCD) as it relates to Orbitrap Exactive or Q Exactive mass spectrometry instruments?

The HCD Cell consists of a straight multipole (octapole) device mounted within a metal tube. The metal tube is in turn connected to the C-Trap in direct line of sight.

The voltage offset between the C-Trap and the HCD Cell is used to accelerate the precursor ions into the gas filled cell. Inside the HCD cell, ions collide with the neutral gas causing rotation, stretching and ultimately cleaving bonds to create fragment ions and neutral species, which are subsequently removed by the vacuum system.

The generated fragment or product ions are then pushed back toward the C-Trap and focused before being pushed toward the Orbitrap analyzer.

Find additional tips, troubleshooting help, and resources within our Mass Spectrometry Support Center.