CTS™ KnockOut™ SR XenoFree Medium, 500 mL - FAQs

View additional product information for CTS™ KnockOut™ SR XenoFree Medium - FAQs (12618013, 12618012)

5 product FAQs found

What is CTS?

The Gibco Cell Therapy Systems (CTS) portfolio of cell and gene therapy products are GMP manufactured, safety tested, and backed by regulatory documentation to support your transition from discovery through clinical and commercial manufacturing. Through our CTS solutions, we are committed to helping customers streamline therapeutic development, minimize risk, and ease the burden on their quality systems. Learn more here.

Find additional tips, troubleshooting help, and resources within our Cell Culture Support Center.

Do you offer a medical device–grade of CTS KnockOut SR XenoFree Medium?

Yes, we do offer a Class II medical device–labeled CTS KnockOut SR XenoFree Medium in the USA and Canada only. Please contact us at custommedia@thermofisher.com to discuss if a medical device grade is required for your application.

Find additional tips, troubleshooting help, and resources within our Cell Culture Support Center.

How do I characterize human embryonic stem ( ES) cells?

Human ES cells are generally characterized by their typical morphology (they grow as tightly packed clusters of small cells with high ratio of nucleus to cytoplasm); surface marker expression; RT-PCR detection of stem cell-specific gene expression (such as Oct3/4, Sox2, and Nanog); alkaline phosphatase staining, and telomerase activity assay. The most commonly used ES specific surface markers include stage-specific embryonic antigens SSEA-3 and SSEA-4 for human ES cells. Other ES-specific surface antigens also include TRA-1-60 and TRA-1-81. (Science 282:1145 (1998).

How are human embryonic stem (ES) cells derived?

Human ES cells are derived from human blastocyst inner cell masses, isolated by immunosurgery with rabbit antiserum to BeWO cells (a human trophoblast cell line) (Science 282:1145 (1998)).

What are ES cells?

Embryonic stem (ES) cells are derived from the early mammalian embryo and are capable of unlimited, undifferentiated proliferation in vitro while maintaining their potential to differentiate into a wide of range of adult tissues including germ cells. The pluripotency of the ES cells is normally demonstrated in vitro by inducing ES cells to differentiate into embryoid bodies and checking lineage-specific markers for differentiated cells in three body layers (endo, meso, and ectoderm), or injecting them into immunodeficient mice and determining the cell types produced in the teratomas.