Clariom ™D Pico 测定,大鼠
Product Image
Applied Biosystems™

Clariom ™D Pico 测定,大鼠

Clariom™ D Assay(大鼠)先前被称为 GeneChip™ 大鼠转录组阵列 1.0 (RTA 1.0)了解更多信息
Have Questions?
货号阵列数量
90266630 阵列
货号 902666
价格(CNY)
-
阵列数量:
30 阵列
Clariom™ D Assay(大鼠)先前被称为 GeneChip™ 大鼠转录组阵列 1.0 (RTA 1.0)。
使用新一代的转录组水平表达谱分析工具 (Clariom D Assay),可从转录组深处加速生物标记物的发现。Clariom D 检测可详细显示转录组细节视图,采用最快路径得到可操作结果。Clariom D 分析可用于人类、小鼠和大鼠,让转录研究科学家快速而简单地得到高保真度的生物标记物签名。基于业界领先的微阵列技术,新型 Clariom D 分析设计提供较复杂的转录组范围内的基因和外显子水平的表达谱,包括在三天的实验中检测编码和长非编码 (lnc) RNA 的选择性剪接事件的能力。

扩大发现新型信息生物标志物的潜力。
近年来,已知转录基因的数量迅速增长,为可操作的生物标记物提供了更多的来源,例如转录本变体和 lncRNA,可用于临床应用,并加深了我们对疾病机制的理解。冗长、复杂且昂贵的测序和靶向表达方法可能会遗漏此类生物标记物,导致无法复制标记并且浪费时间和成本。

Clariom D 测定全面覆盖转录的基因组,包括所有已知的编码和非编码剪接变体,与临床样品类型兼容以及灵活的数据分析软件,Clariom D 是翻译研究人员进行复杂表达生物标志物发现研究并希望较快获得稳健临床相关以及可操作结果的主要工具

获取您需要的所有数据。
• 使用从样品量庞大的公共数据库中获得的 >214,000 个转录本快速鉴别复杂的疾病特征,该数据库较全面地覆盖大鼠转录组。
•可靠地检测产生编码 RNA 和 lncRNA 亚型的基因、外显子和其他选择性剪接事件。
•检测罕见的低表达转录本,而一般的测序方法检测不到这类转录本。
•借助直观、高度可视的免费分析软件,在几分钟之内即可从数据获得洞察力。

对于贵重样品,可一举成功。
• 可从总 RNA 量低至 100 pg 的样品中–以及低至 10 个细胞样品中,生成具有可靠性的表达谱。
•使用来自不同样品类型的 RNA,包括血液、细胞、新鲜/新鲜冷冻或 FFPE 组织。
•该检测可保持样品完整性并降低数据变异性,且无需球蛋白或 rRNA 去除步骤。

Clariom D 解决方案以单一样品(检测盒阵列)格式提供,可在 GeneChip 3000 仪器系统上使用,包括试剂和快速简单的转录组分析控制台 (TAC) 软件,该软件可分析和显示基因、外显子、通路和选择性剪接事件。
仅供科研使用。不可用于诊断程序。
规格
阵列转录组谱分析
芯片格式过柱
适用于(应用)微阵列分析
反应次数30
阵列数量30 阵列
产品线Applied Biosystems™
产品类型Pico 测定
数量30 reactions
运输条件经批准可在室温下或者湿冰或干冰上运输
种属大鼠
样品类型RNA
Unit SizeEach

常见问题解答 (FAQ)

What reagent kit should I use with my array?

Please refer to the Microarray Reagent Guide for Arrays and Expression Kits to match the correct reagents your array.

Find additional tips, troubleshooting help, and resources within our Microarray Analysis Support Center.

What is an Event Score in TAC 4.0 Software?

TAC 4.0 includes two algorithms for identifying alternative splicing events: the TAC 2.0 algorithm and the new EventPointer. Algorithmic determination of alternate splicing remains a challenging problem. TAC 4.0 supports two different approaches that have different sets of strengths and weaknesses. After considerable testing, the new TAC 4.0 “'Event Score” leverages both previous TAC 2.0 event estimation score and Event Pointer p-value and sorts the most likely alternative splicing events to the top. Of course, the TAC 2.0 event score and EventPointer p-values remain individually available.

Find additional tips, troubleshooting help, and resources within our Microarray Analysis Support Center.

What are the new software components of TAC 4.0?

LIMMA: LIMMA stands for Linear Models for MicroArray data. It is an R/Bioconductor software package that provides an integrated solution for analyzing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, LIMMA has been a popular choice for gene discovery through differential expression analyses of microarray data. There are ˜8000 citations using LIMMA and Affymetrix arrays. The TAC 4.0 interface exposes the core differential expression analysis functionality including real covariates and random factors. In addition, the interface simplifies the creation of the design and contrast matrices that specify the experimental design and comparisons for the analysis.

Batch Effect Adjustment: Batch effects are systematic changes in microarray sample intensities that reflect changes in the assay sometimes found in different batches. These effects occur more commonly in larger studies in which all of the samples cannot be processed at the same time. TAC 4.0 enables the interface to the ComBat batch adjustment algorithm, which can remove the batch effects from the signals.

EventPointer: EventPointer is a Bioconductor package that identifies alternative splicing events in microarray data. TAC 4.0 incorporates an interface to this package.

Exploratory Grouping Analysis: Exploratory Grouping Analysis (EGA) is an interface to a set of R packages that offer the ability to examine the relationships between multiple microarray samples. While the scientist typically has a preconceived idea regarding the classification of the samples in an experiment, the resulting data often show additional substructure due to unexpected biological differences or batch effects. The EGA interface enables the identification of this substructure. Biological differences can be further explored using LIMMA differential expression analysis. Batch effects can be removed using ComBat to prevent them from obscuring the biology of interest.

Find additional tips, troubleshooting help, and resources within our Microarray Analysis Support Center.

If I have TAC 3.1 .TAC files (TAC analysis files), can I load these into TAC 4.0 Software or will I need to reanalyze?

TAC 3.1 .TAC files cannot be opened in TAC 4.0 Software. Studies will need to be reprocessed in TAC 4.0. The new analysis can be run from .CEL files or .CHP files.

Find additional tips, troubleshooting help, and resources within our Microarray Analysis Support Center.

In TAC 4.0 Software, can I measure the quality of a single hybridization without the rest of the experiment?

We do not recommend this. In large-scale expression experiments using similar sample types, researchers are likely to develop their own single-array guidelines on what metric values are predictive of high- or poor-quality samples. However, these guidelines are likely to be dependent on sample type and we are unable to recommend such guidelines for all possible situations. Note that the trend toward favoring model-based signal estimation algorithms (for all microarray experiments even beyond the Thermo Fisher platform) makes single-array quality determination very difficult due to the necessity of simultaneously analyzing multiple arrays to calculate signal estimates.

Find additional tips, troubleshooting help, and resources within our Microarray Analysis Support Center.