AnStat-330 Online Sampling and Elemental Analysis Station - FAQs

View additional product information for AnStat-330 Online Sampling and Elemental Analysis Station - FAQs (ANSTAT330)

7 product FAQs found

What is the best way of engineering a sampling and analysis solution for high availability?

Integrating sampling and analysis into one product is the best solution. Placing the analyzer within the sampler eliminates any scope for settling or sedimentation. This approach ensures dedicated real-time measurement with minimal risk of blockage. On the CAPEX front, this approach reduces piping design hours and expenditures on pumping. On an ongoing basis, integration minimizes maintenance and operation costs. The off-the-shelf solution, Thermo Scientific AnStat-330 Sampling and Analysis Station, encapsulates this approach. As a low head loss system, it offers market-leading availability and is well-matched to applications requiring high frequency dedicated measurement.

How can I reduce construction costs in my new copper mining plant or expansion?

Thermo Scientific samplers and analyzers have the lowest head loss on the market. This helps minimizing the need for additional piping and pumps. Our solutions can help reduce costs of new plants by sensing and sorting waste and ore prior to stockpiles and plant feed. This diversion of below cut-off grade ore and waste enables a smaller plant footprint.

How can I reduce the need for pipes and pumps in my copper mining plant?

Dedicated analyzers can be placed close to the sample point to minimize the need for additional piping and often avoids the need for a pump. The Thermo Scientific AnStat-330 Sampling and Analysis Station is a dedicated analyzer that also incorporates an industry leading statistically representative sampling station. It has the lowest head loss of any analyzer on the market which enables its placement downstream of the sample point thereby using gravity to take the sample to the analyzer.

In an online slurry analysis system, how do I know if the recirculating load is being fully monitored?

To fully monitor the recirculating load, it is also necessary to monitor the rougher and scavenger concentrates and cleaner tailing streams. As recirculating loads tend to build up slowly with time, these analyses are not required on a minute-by-minute basis so these streams can be monitored with a lower cost-per-stream centralized analyzer.

In an online elemental analysis system, how critical is a given stream is in the overall process control strategy?

If the critical streams are monitored frequently as per the recommended criteria, the operators should be able to control the plant to give overall stability and best metallurgical results at minimum cost. The less critical intermediate streams can then be monitored at a lower frequency for the fine tuning of the circuit.

The degree of confidence required in the assay-based control decisions must be known. Streams that are more critical for control of the plant need to be monitored more frequently. Trends in plant performance will then be shown in more detail, showing effect of control actions on grade in real-time and giving greater confidence in control decisions. For example, in a base metal concentrator, the main objective might be to minimize metal losses in primary floatation while producing a particular concentrate grade in the cleaners. In addition, test work may show that recirculating loads tend to build up in the cleaning stages which is a result of recovery of excessive gangue in the rougher concentrate. Continuous analysis of tailings grades provides a critical tool in the operation of rougher flotation. On-line analysis of concentrates provides a tool to manage grade-recovery in the cleaners and better control impurities to meet the smelter requirements.

In an online elemental analysis system, do the elements to be analyzed and the frequency of analysis need to be specified for each process stream?

The elements to be analyzed are determined by the objectives of the process control strategy and the particular metallurgical problems which are anticipated from prior metallurgical test work. The frequency of analysis required, often referred to as the assay update time, depends on the following criteria:

- The fluctuation in assays in a given process stream considering the residence times of the processes immediately upstream
- The stability of the circuit
- At a minimum, the assay update times of the analyzers for the critical streams should be less than half of the retention time of the preceding process stage

Therefore, in the tailings stream from a scavenger bank of cells with a retention time of 5 mins, the grade can be expected to vary considerably in 2 mins during upset conditions or reactions to process control actions so on-line analysis should be made at an interval less than this to provide the best visibility of real-time plant performance. To obtain these sorts of assay update times, one requires dedicated analyzers or a centralized analyzer with just a few streams located nearby the process sample points.

What capital constraints should be considered when selecting an online slurry analysis system?

When selecting the right online slurry analysis system, there are several capital constraints that should be considered, including

- Capital investment,
- Economic benefits expected
- Cost of on-going maintenance
- Flexibility of system modules
- Incremental benefits of less essential assays.

The economic benefits of having an on-line slurry analysis system coupled to a control system, be it manual or fully automatic, comes from one or more of the following: increase in metal recovery, improvement in concentrate grade and control of impurities, reduction in reagent consumption, decrease in operating costs, and improvement in stability of the operation.

These benefits have to be weighed against the capital investment of the analysis system and the cost of on-going maintenance including mechanical repairs, sample pump servicing or replacement, sample transport system troubleshooting, electronic repairs, analyzer downtime and calibration. The flexibility of hybrid systems of dedicated analyzers for the critical streams and multi-stream analyzers for the less critical streams enables the most cost effective analysis system to be selected for each particular plant. In working out what streams are to be measured, a cost benefit analysis should be carried out to guide the decision making process.