Dextran, Tetramethylrhodamine, 10,000 MW, Lysine Fixable (fluoro-Ruby) - FAQs

View additional product information for Dextran, Tetramethylrhodamine, 10,000 MW, Lysine Fixable (fluoro-Ruby) - FAQs (D1817)

5 product FAQs found

Why do I lose all signal from my neuronal tracer when I do a methanol fixation on my cells?

If the tracer you chose is a lipophilic dye and fix with methanol, the lipids are lost with the methanol. If you have to use methanol fixation then choose a tracer that will covalently bind to proteins in the neurons.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I stained my cells with a lipophilic cyanine dye, like DiI, but the signal was lost when I tried to follow up with antibody labeling. Why?

Since these dyes insert into lipid membranes, any disruption of the membranes leads to loss of the dye. This includes permeabilization with detergents like Triton X-100 or organic solvents like methanol. Permeabilization is necessary for intracellular antibody labeling, leading to loss of the dye. Instead, a reactive dye such as CFDA SE should be used to allow for covalent attachment to cellular components, thus providing for better retention upon fixation and permeabilization.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I labeled my neurons with DiI and then fixed and permeabilized and now I have no signal. What did I do wrong?

DiI is a lipophilic dye that resides mostly in lipids in the cell, when cells are permeabilized with detergent or fixed using alcohol this strips away the lipid and the dye. If permeabilization is required CM-DiI can be used because this binds covalently to proteins in the membrane; some signal is lost upon fixation/permeabilization, but enough signal should be retained to make detection possible.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Is there a way to label individual neurons without microinjecting?

The solid and crystalline forms of DiI and other related dyes (Cat. Nos. D282, D3911, D7757, and D12731) are sometimes placed in contact with a specific neuron where it will travel down the cell by lateral diffusion via the membrane. Alternatively, our NeuroTrace Tissue Labeling Paste can be scooped onto a needle and placed onto particular neurons.

Please see the information below for a comparison of our neuronal cell labeling methods:
Product:Method of labeling: Labeling intensity: Features
Neuron-specific antibodies: Primary antibodies directed to proteins expressed in neuronal cells: Proportional to the amount of protein expressed: Provides the only neuronal specific labeling method
Lipophilic neuronal ytracers: Hydrophobic dyes are incorporated into lipids in the cell: This labeling method provides the most intense labeling becuase of the abundant amount of lipids: Allows tracing of neurons throughout the sample
Membrane potential indicators: Dyes are loaded into live cells in aqueous buffers: Depends on either changes in structures due to the electrical field they are in, or dye influx due to depolarization: Changes in membrane potential play a central role in physiological processes, including nerve-impulse propagation, muscle contraction, and cell signaling

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What products do you have for neuronal tracing?

Please check out this web page (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-tracing-tracking-and-morphology/neuronal-tracing.html) for details.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.