Antaris™ II FT-NIR 分析仪
Antaris™ II FT-NIR 分析仪
Thermo Scientific™

Antaris™ II FT-NIR 分析仪

使用 Thermo Scientific™ Antaris™ II FT-NIR 分析仪以适用于工厂包装的形式轻松实现基于实验室的 FT-NIR 性能。

Have Questions?
货号源类型光谱范围
IQLAADGABCFADUMAAV长寿命、高强度卤素 NIR 源;备用源包括可确保微丝图像对齐的系统12,000 至 3800 cm-1(833 至 2630 nm)
货号 IQLAADGABCFADUMAAV
价格(CNY)
-
申请报价
源类型:
长寿命、高强度卤素 NIR 源;备用源包括可确保微丝图像对齐的系统
光谱范围:
12,000 至 3800 cm-1(833 至 2630 nm)

使用 Thermo Scientific™ Antaris™ II FT-NIR 分析仪以适用于工厂包装的形式轻松实现基于实验室的 FT-NIR 性能。Antaris II FT-NIR 分析仪凭借业内领先的方法转移性能,保证了近线、在线、线内的数据采集稳健且可靠。您可以自定义 Antaris II FT-NIR 分析仪用于特定应用,也可选择 Antaris II MDS 方法开发采样系统(包括透射、光纤和积分球漫反射分析多合一整体系统)。

Antaris II FT-NIR 分析仪可:

  • 快速准确的分析任何类型的样品
  • Thermo Scientific™ ValPro™ 仪器资格认证软件包可使监管合规性认证工作(DQ、IQ、OQ 和 PQ)变得更容易
  • 结果的重现性与配置、维护、用户或环境无关
  • 在实验室或工厂中实现进行快速、精确和准确测量

订购信息:
Antaris II FT-NIR 分析仪可根据您的特定需求作为配套系统销售。更多信息,请联系您的 Thermo Scientific 销售代表。

推荐用途:

  • 固体
  • 粉末
  • 颗粒
  • 片剂
  • 糊剂
  • 凝胶
  • 糖浆
  • 薄膜
  • 液体
规格
分析仪类型傅里叶变换近红外
描述Thermo Scientific™ Antaris™ II FT-NIR 分析仪树立了行业标准,可利用为工厂定制的软件包提供基于实验室的 FT-NIR 性能。
检测高灵敏度、高稳定性的匹配 InGaAs
高度(公制)33 cm
界面PC 直接连接以太网,可实现文件系统与 OPC 的通信
干涉仪经验证的、无摩擦、稳定、长寿命 Michelson
长度(公制)68.5 cm
工作温度范围15°C 至 35°C(59°F 至 95°F)
光度线性度斜率 1.0 ±0.05,截距 0.0 ±0.05
产品类型Antaris II FT-NIR 分析仪
分辨率4 cm-1 光谱范围(1250 nm 处为 0.6 nm),2 cm-1 光谱范围(1250 nm 处为 0.3 nm)
采样模式可配置反射、透射、光纤或片剂透射。
密封和干燥
源类型长寿命、高强度卤素 NIR 源;备用源包括可确保微丝图像对齐的系统
光谱范围12,000 至 3800 cm-1(833 至 2630 nm)
系统状态指示器
电压90/264 V
波数准确度±0.03 cm-1(1250 nm 处为 0.005 nm)
波数重复性单系统:10 测量标准差 <0.006 cm-1
波数可重现性系统间:优于 0.05 cm-1(1250 nm 处为 0.008 nm)
重量(公制)47.7 kg
宽度(公制)40.6 cm
Unit SizeEach

常见问题解答 (FAQ)

How are probes used for in-line NIR analysis?

Fiber optic probes can be used for analyzing liquid samples in transmission or solid samples in reflection. For samples that have bubbles or solids or change state between liquid and solid, a transflectance probe works the best. A fitting attached to the probe mates it with a port on a tank, pipe, reactor, hopper, or above a conveyor. The common fittings used with probes are Swagelok, sanitary tri-clamp or bolt-on.

How can I use an Antaris FT-NIR analyzer for in-line process analysis?

If the process environment has water hose down, CIP, dust, high temperature, corrosive or explosive chemicals, the Antaris FT-NIR analyzer needs to be placed in a safe area or enclosed in an environmentally stabilized enclosure. Fiber optics run from the NIR analyzer to probes or flow cells installed in production process pipes, tanks, hoppers, conveyors, reactors, etc. The fiber optics carry the NIR source light to the probe sampling window and then carry the light after it has interacted with the sample back to the NIR analyzer detector. The end of the probe will have a window or an air gap for reflection or transmission analysis. The product being analyzed must be self-cleaning or the probe engineered to automatically clean itself by high pressure air. The computer that controls the NIR analyzer is also located in the safe area with Thermo Scientific RESULT Software exporting NIR results to text or Microsoft Excel files, LIMS, OPC or by 4-20 mA.

Can current calibrations from a different manufacturer be transferred to the Antaris FT-NIR analyzer?

Yes, using the Thermo Scientific Standards converter utility program, spectra from other NIR manufacturers can be converted to a format directly compatible with the Antaris FT-NIR analyzer. The utility program converts spectra from wavelength to wave number as well as converts to a standard absorbance format. Then it automatically transfers the converted spectra and all associated wet chemistry data into Thermo Scientific TQ Analyst calibration development software. The method developer then sets the spectral processing and regions in TQ Analyst and calibrates the method into Antaris format.

What is Raman spectroscopy?

In Raman spectroscopy, an unknown sample of material is illuminated with monochromatic (single wavelength or single frequency) laser light, which can be absorbed, transmitted, reflected, or scattered by the sample. Light scattered from the sample is due to either elastic collisions of the light with the sample's molecules (Rayleigh scatter) or inelastic collisions (Raman scatter). Whereas Rayleigh scattered light has the same frequency (wavelength) of the incident laser light, Raman scattered light returns from the sample at different frequencies corresponding to the vibrational frequencies of the bonds of the molecules in the sample.

If you wish to learn more about Raman spectroscopy, visit our online Raman Spectroscopy Academy (https://www.thermofisher.com/us/en/home/industrial/spectroscopy-elemental-isotope-analysis/spectroscopy-elemental-isotope-analysis-learning-center/molecular-spectroscopy-information/raman-technology.html), where you will find basic Raman tutorials, advanced Raman webinars on sample applications, and a helpful instrument guide.