LIVE/DEAD™ Fixable Far Red Dead Cell Stain Kit, for 633 or 635 nm excitation
Invitrogen17万+抗体限时买二赠一,靶点广,灵活用!
LIVE/DEAD™ Fixable Far Red Dead Cell Stain Kit, for 633 or 635 nm excitation
Invitrogen™

LIVE/DEAD™ Fixable Far Red Dead Cell Stain Kit, for 633 or 635 nm excitation

The LIVE/DEAD™ Fixable Far-Red Dead Cell Stain Kit is used to determine the viability of cells prior to the fixationRead more
Have Questions?
Change viewbuttonViewtableView
Catalog NumberQuantity
L3497380 Assays
L34974400 Assays
L10120200 Assays
Catalog number L34973
Price (CNY)
1,126.00
Online Exclusive
Ends: 31-Dec-2025
1,496.00
Save 370.00 (25%)
Each
Add to cart
Quantity:
80 Assays
Price (CNY)
1,126.00
Online Exclusive
Ends: 31-Dec-2025
1,496.00
Save 370.00 (25%)
Each
Add to cart
The LIVE/DEAD™ Fixable Far-Red Dead Cell Stain Kit is used to determine the viability of cells prior to the fixation and permeabilization required for intracellular antibody staining or prior to elimination of biohazardous materials using formaldehyde fixation. This kit has been optimized and validated for use with a red laser flow cytometer.

• Stable—dyes are freeze dried in separate vials to maintain stability

• Robust—staining pattern is the same before and after fixation

• Bright signal—allows for easy distinction between live/dead cells in single channel

View a selection guide for all fixable viability dyes for flow cytometry.

Stable
Unlike products that are sold in solution, the LIVE/DEAD™ Fixable Far-Red Stain has been conveniently packaged in 40-test vials to help ensure the stability and performance of the dye over time. Amine reactive dyes in solution will lose their effectiveness over a short period of time, therefore it is recommended to completely use the vial once rehydrated. If this is not possible, aliquot the vials in small volumes and store at -80°C, avoiding freeze-thaw cycles.

Robust
Dead cell discriminator stains can lose sensitivity after treatment with fixatives such as formaldehyde or ethanol-based fixation methods required for intracellular phosphorylation studies. The LIVE/DEAD™ Fixable Far-Red Stain is an amine reactive dye that binds covalently to intracellular and extracellular amines, and the staining pattern is preserved following formaldehyde fixation.

Optimal brightness
The LIVE/DEAD™ Fixable Far-Red Stain was selected based on its fluorescent properties to provide a bright signal when excited with a red laser. The far-red fluorescent reactive dye has an excitation maximum of ∼633 nm making it ideal for use with the red or HeNe laser with an emission of ∼655 nm. Since live and dead cells can be discriminated using a single dye and a single channel of a flow cytometer, it is an ideal choice for multi-color experiments.

How it works
In cells with compromised membranes, the dye reacts with free amines both in the cell interior and on the cell surface, yielding intense fluorescent staining. In viable cells, the dye's reactivity is restricted to the cell-surface amines, resulting in less intense fluorescence. The difference in intensity is typically greater than 50-fold between live and dead cells, allowing for easy discrimination.

Colors available
LIVE/DEAD™ Fixable Dead Cell Stains are available in a wide variety of colors to meet your multi-color panel needs.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Cell PermeabilityImpermeant
Cell TypeEukaryotic Cells
DescriptionLIVE/DEAD™ Fixable Far Red Dead Cell Stain Kit, for 633 or 635 nm excitation
Detection MethodFluorescence
Dye TypeLIVE/DEAD™ Fixable Far Red Dead Cell Stain
FormSolid
FormatTube(s)
Quantity80 Assays
Shipping ConditionRoom Temperature
SolubilityDMSO (Dimethylsulfoxide)
ColorFar-red
Emission655
Excitation Wavelength Range633 nm
For Use With (Application)Viability Assay
For Use With (Equipment)Flow Cytometer
Product LineLIVE/DEAD
Product TypeStain
Unit SizeEach
Contents & Storage
Contains 2 vials of LIVE/DEAD™ fixable dead cell stain and 500 μL DMSO.

Store at -20°C.

Frequently asked questions (FAQs)

How do I prepare dead cell controls for LIVE/DEAD cell viability assays?

There are two easy options. One is to heat-inactivate the cells by placing at 60 degrees C for 20 minutes. The second is to subject the cells to 70% ethanol. Alcohol-fixed cells can be stored indefinitely in the freezer until use, potentially up to several years.

Centrifuge cells, pellet, and remove supernatant.
Fix cells: Add 10 mL ice cold 70% ETOH to a 15 mL tube containing the cell pellet, adding dropwise at first while vortexing, mix well.
Store in freezer until use.
When ready to use, wash twice and resuspend in buffer of choice.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Which cell viability kits are compatible with fixation?

The LIVE/DEAD Fixable kits for flow cytometry analysis are compatible with fixation. These kits use amine-reactive cell-impermeant dyes that stain the cell surface of live cells and also the cytosol of dead cells-live cells are dim and dead cells are bright. Since the dye is covalently bound to the cells, it will be retained after fixation. Unfortunately, this method does not work well for imaging-based assays, as all cells are stained and it is difficult to distinguish bright dead cells from dim live cells with a microscope. Ethidium monoazide (EMA; Cat No. E1374) is a cell impermeant nucleic acid stain that can be applied to live cultures and stains only dead cells. After incubation and washing away unbound dye, the cells can be exposed to light to photoactivate EMA to crosslink to dead cell DNA. After crosslinking to dead cell DNA, the samples may be fixed and permeabilized. Image-IT DEAD Green Viability Stain (Cat. No. I10291) for imaging and high-content screening (HCS) analysis is a live-cell impermeant DNA binding dye that is compatible with fixation and permeabilization with good retention up to 48 hours. We also have a LIVE/DEAD Reduced Biohazard Cell Viability Kit (Cat. No. L7013) for imaging and flow analysis that contains two DNA binding dyes, SYTO 10 and Dead Red, that are sufficiently retained to be analyzed soon after 4% glutaraldehyde fixation.
Note: In general, DNA-binding dyes and calcein AM are not compatible with fixation, as these dyes are not covalently bound to components of the cell and will thus slowly diffuse out of cells after fixation, gradually staining all cells as dead.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (5)

Citations & References
Abstract
Levels of circulating endothelial cells are low in idiopathic pulmonary fibrosis and are further reduced by anti-fibrotic treatments.
Authors:De Biasi S, Cerri S, Bianchini E, Gibellini L, Persiani E, Montanari G, Luppi F, Carbonelli CM, Zucchi L, Bocchino M, Zamparelli AS, Vancheri C, Sgalla G, Richeldi L, Cossarizza A,
Journal:
PubMed ID:26552487
'It has been suggested that circulating fibrocytes and endothelial cells actively participate in the intense remodelling of the pulmonary vasculature in patients with idiopathic pulmonary fibrosis (IPF). Indeed, fibrotic areas exist that have fewer blood vessels, whereas adjacent non-fibrotic tissue is highly vascularized. The number of circulating endothelial cells (CEC) ... More
The oxysterol-CXCR2 axis plays a key role in the recruitment of tumor-promoting neutrophils.
Authors:Raccosta L, Fontana R, Maggioni D, Lanterna C, Villablanca EJ, Paniccia A, Musumeci A, Chiricozzi E, Trincavelli ML, Daniele S, Martini C, Gustafsson JA, Doglioni C, Feo SG, Leiva A, Ciampa MG, Mauri L, Sensi C, Prinetti A, Eberini I, Mora JR, Bordignon C, Steffensen KR, Sonnino S, Sozzani S, Traversari C, Russo V,
Journal:
PubMed ID:23897983
'Tumor-infiltrating immune cells can be conditioned by molecules released within the microenvironment to thwart antitumor immune responses, thereby facilitating tumor growth. Among immune cells, neutrophils play an important protumorigenic role by favoring neoangiogenesis and/or by suppressing antitumor immune responses. Tumor-derived oxysterols have recently been shown to favor tumor growth by ... More
CD8+ T cell responses to lytic EBV infection: late antigen specificities as subdominant components of the total response.
Authors:Abbott RJ, Quinn LL, Leese AM, Scholes HM, Pachnio A, Rickinson AB,
Journal:
PubMed ID:24146041
EBV elicits primary CD8(+) T cell responses that, by T cell cloning from infectious mononucleosis (IM) patients, appear skewed toward immediate early (IE) and some early (E) lytic cycle proteins, with late (L) proteins rarely targeted. However, L Ag-specific responses have been detected regularly in polyclonal T cell cultures from ... More
Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease.
Authors:Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, Jankevicius G, Simpson MA, Matic I, Ozkan E, Golia B, Schellenberg MJ, Weston R, Williams JG, Rossi MN, Galehdari H, Krahn J, Wan A, Trembath RC, Crosby AH, Ahel D, Hay R, Ladurner AG, Timinszky G, Williams RS, Ahel I,
Journal:EMBO J
PubMed ID:23481255
Adenosine diphosphate (ADP)-ribosylation is a post-translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP-ribosylation reactions are the poly(ADP-ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP-ribose nucleotide to target proteins and some PARP family members can subsequently add additional ... More
G-CSF activation of AKT is not sufficient to prolong neutrophil survival.
Authors:Souza LR, Silva E, Calloway E, Cabrera C, McLemore ML,
Journal:J Leukoc Biol
PubMed ID:23559492
Neutrophils play an important role in the innate immune response against bacterial and fungal infections. They have a short lifespan in circulation, and their survival can be modulated by several cytokines, including G-CSF. Previous studies have implicated AKT as a critical signaling intermediary in the regulation of neutrophil survival. Our ... More