I am seeing high background outside of my neuronal cells when using membrane potential indicators. What can I do to reduce background?
If you use our FluoVolt Membrane Potential Kit (Cat. No. F10488), the kit provides a background suppressor to reduce this problem. For other indicators, consider the use of BackDrop Background Suppressor (Cat no. R37603, B10511, and B10512).
What is the difference between fast and slow-response membrane potential probes?
Molecules that change their structure in response to the surrounding electric field can function as fast-response probes for the detection of transient (millisecond) potential changes. Slow-response dyes function by entering depolarized cells and binding to proteins or membranes. Increased depolarization results in additional dye influx and an increase in fluorescence, while hyperpolarization is indicated by a decrease in fluorescence. Fast-response probes are commonly used to image electrical activity from intact heart tissues or measure membrane potential changes in response to pharmacological stimuli. Slow-responding probes are often used to explore mitochondrial function and cell viability.