BLOCK-iT™ Lentiviral RNAi Zeo Gateway™ Vector Kit - FAQs

View additional product information for BLOCK-iT™ Lentiviral RNAi Zeo Gateway™ Vector Kit - FAQs (V48820)

43 product FAQs found

Can I use any Gateway entry vector to generate entry clones for use in RNAi applications?

No, you should use an entry vector that contains the elements necessary for RNA Polymerase III-dependent expression of your shRNA (i.e., Pol III promoter and terminator).

What is a dose response curve or kill curve? And can you outline the steps involved?

A dose response curve or kill curve is a simple method for determining the optimal antibiotic concentration to use when establishing a stable cell line. Untransfected cells are grown in a medium containing antibiotic at varying concentrations in order to determine the lowest amount of antibiotic needed to achieve complete cell death. The basic steps for performing a dose response curve or kill curve are as follows:

- Plate untransfected cells at 25% confluence, and grow them in a medium containing increasing concentrations of the antibiotic. For some antibiotics, you will need to calculate the amount of active drug to control for lot variation.
- Replenish the selective medium every 3-4 days. After 10-12 days, examine the dishes for viable cells. The cells may divide once or twice in the selective medium before cell death begins to occur.
- Look for the minimum concentration of antibiotic that resulted in complete cell death. This is the optimal antibiotic concentration to use for stable selection.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Can I create stable cell lines using pENTR/U6 entry vector or the pENTR/H1/TO vector?

Unfortunately, the pENTR/U6 vector does not contain a selection marker; therefore, only transient RNAi analysis may be performed. If you wish to generate stable cell lines, perform an LR reaction into an appropriate Gateway destination vector to generate expression clones.
The pENTR/H1/TO vector contains the Zeocin resistance gene to facilitate generation of cell lines that inducbily express the shRNA of interest. Perform a kill curve to determine the minimum concentration of Zeocin that is required to kill your untransfected mammalian cell line. Please note that Zeocin-sensitive cells do not round up and detach from the plate, but rather may increase in size, show abnormal cell shape, display presence of large empty vesicles in the cytoplasm, or show breakdown of plasma/nuclear membranes.

Find additional tips, troubleshooting help, and resources within our RNAi Support Center.

What loop sequence should I use when designing my shRNA for cloning? Do you have any guidelines I should follow?

You can use a loop sequence of any length ranging from 4 to 11 nucleotides, although short loops (i.e., 4-7 nucleotides) are generally preferred. Avoid using a loop sequence containing thymidines (Ts), as they may cause early termination. This is particularly true if the target sequence itself ends in one or more T nucleotides. Here are some loop sequences we recommend:

- 5' - CGAA - 3'
- 5' - AACG - 3'
- 5' - GAGA - 3'

What considerations regarding transcription initiation should I take when designing my shRNA for cloning?

Transcription of the shRNA initiates at the first base following the end of the U6 promoter sequence. In the top-strand oligo, the transcription initiation site corresponds to the first nucleotide following the 4 bp CACC sequence added to permit directional cloning. We recommend initiating the shRNA sequence at a guanosine (G) because transcription of the native U6 snRNA initiates at a G. Note the following:

- If G is part of the target sequence, then incorporate the G into the stem sequence in the top-strand oligo and add a complementary C to the 3' end of the top-strand oligo.
- If G is not the first base of the target sequence, we recommend adding a G to the 5' end of the top-strand oligo directly following the CACC overhang sequence. In this case, do not add the complementary C to the 3' end of the top-strand oligo. Note: We have found that adding the complementary C in this situation can result in reduced activity of the shRNA. Alternative, if use of a G to initiate transcription is not desired, use an adenosine (A) rather than C or T. Note, however, that use of any nucleotide other than G may affect initiation efficiency and position.

How do I order the shRNA for vector expression?

Please follow the steps outlined below:

- Visit RNAi Designer
- Enter an accession number or provide a nucleotide sequence
- Determine the region for target design: ORF, 5' UTR, or 3' UTR
- Choose database for Blast
- Choose minimum and maximum G/C percentage
Select vector and strand orientation and click “RNAi Design” to design shRNA.

What molar ratio do you recommend for ligating my ds oligo to the pENTR/U6 entry vector or pENTR/H1/TO vector?

For optimal results, use a 10:1 molar ratio of ds oligo insert:vector for ligation.

How can I check the integrity of my ds oligo once it is annealed?

We suggest running an aliquot of the annealed ds oligo (5 µL of the 500 nM stock) and comparing it to an aliquot of each starting single-stranded oligo (dilute the 200 µM stock 400-fold to 500 nM; use 5 µL for gel analysis). Be sure to include an appropriate molecular weight standard. We generally use the following gel and molecular weight standard:

- Agarose gel: 4% E-Gel (Cat. No. G5000-04)
- Molecular weight standard: 10 bp DNA Ladder (Cat. No. 10821-015)

When analyzing an aliquot of the annealed ds oligo reaction by agarose gel electrophoresis, we generally see the following:
- A detectable higher molecular weight band representing annealed ds oligo.
- A detectable lower molecular weight band representing unannealed single-stranded oligos. Note that this band is detected since a significant amount of the single-stranded oligo remains unannealed.

How do I anneal my single-stranded DNA oligos to create a ds oligo?

You will want to anneal equal amounts of the top- and bottom-strand oligos to generate the ds oligos. If your single-stranded oligos are supplied lyophilized, resuspend them in water or TE buffer to a final concentration of 200 µM before use. We generally perform the annealing reaction at a final single-stranded oligo concentration of 50 µM. Annealing at concentrations lower than 50 µM can significantly reduce the efficiency. Note that the annealing step is not 100% efficient; approximately half of the single-stranded oligos remain unannealed even at a concentration of 50 µM. Please see the steps below:

1. In a 0.5 mL sterile microcentrifuge tube, set up the following annealing reaction at room temperature.
“Top-strand” DNA oligo (200 µM) - 5 µL, “Bottom-strand” DNA oligo (200 µM)- 5 µL, 10X Oligo Annealing Buffer - 2 µL, DNase/RNase-Free Water - 8 µL which should make a total volume of 20 µL.
2. If reannealing the lacZ ds control oligo, centrifuge its tube briefly (approximately 5 seconds), then transfer the contents to a separate 0.5 mL sterile microcentrifuge tube.
3. Incubate the reaction at 95 degrees C for 4 minutes.
4. Remove the tube containing the annealing reaction from the water bath or the heat block, and set it on your laboratory bench.
5. Allow the reaction mixture to cool to room temperature for 5-10 minutes. The single-stranded oligos will anneal during this time.
6. Place the sample in a microcentrifuge and centrifuge briefly (approximately 5 seconds). Mix gently.
7. Remove 1 µL of the annealing mixture and dilute the ds oligo as directed.
8. Store the remainder of the 50 µM ds oligo mixture at -20 degrees C.
You can verify the integrity of your annealed ds oligo by agarose gel electrophoresis, if desired.

What do I need to order to use your pENTR/U6 entry vector or pENTR/H1/TO vector?

You will need a double-stranded oligo that encodes the shRNA of interest to be cloned into one of the above-mentioned vectors. Use our RNAi Designer to design and synthesize two complementary single-stranded DNA oligonucleotides, with one encoding the shRNA of interest.

What does TO stand for in the pENTR/H1/TO vector?

TO stands for tetracycline operator, as this entry vector contains elements required for tetracycline-inducible expression of the shRNA in mammalian cells. The presence of the Tet operator sequences enables the shRNA of interest to be expressed in a tetracycline-dependent manner, thereby making this an inducible system.

What is the difference between the H1 and the U6 promoters?

The BLOCK-iT Inducible H1 and U6 Entry Vector Kits use either the Pol III-dependent H1 or the U6 promoter, respectively. The H1 promoter is modified to contain two flanking tetracycline operator (TetO2) sites within the H1 promoter. This allows the shRNA expressed from this promoter to be regulated in cells that express the tetracycline repressor (TR) protein. Both the H1 and the U6 are Pol III type promoters; however, there may be some minor differences in their effectiveness, depending on the cell line used.

What vectors do you offer for shRNA?

We offer our pENTR/U6 (Cat. No. K494500) and pENTR/H1/TO (Cat. No. K492000) vectors for shRNA delivery. Both vectors are Gateway compatible and drive expression through either the U6 or H1/TO promoter, respectively. The pENTR/H1/TO vector is for inducible shRNA expression, while the pENTR/U6 can be used for constitutive expression. If you want to design shRNA oligos compatible with both vectors, select the pENTER/U6 vector.

What are the general features of shRNA?

Exogenous short hairpin RNAs can be transcribed by RNA Polymerase III (Paule and White, 2000) and generally contain the following structural features: A short nucleotide sequence ranging from 19-29 nucleotides derived from the target gene, followed by a short spacer of 4-15 nucleotides (i.e., loop) and a 19-29 nucleotide sequence that is the reverse complement of the initial target sequence. The resulting RNA molecule forms an intramolecular stem-loop structure that is then processed to an siRNA duplex by the Dicer enzyme.

What does shRNA stand for, and how does it work?

Short hairpin RNA (shRNA) is an artificially designed class of RNA molecules that can trigger gene silencing through interaction with cellular components common to the RNAi and miRNA pathways. Although shRNA is a structurally simplified form of miRNA, these RNA molecules behave similarly to siRNA in that they trigger the RNAi response by inducing cleavage and degradation of target transcripts (Brummelkamp et al., 2002; Paddison et al., 2002; Paul et al., 2002; Sui et al., 2002; Yu et al., 2002). An RNA Polymerase III (Pol III), such as U6 and H1, drives transcription of shRNA transcripts. shRNA hairpins are exported from the nucleus and processed by Dicer into the cytosol, resulting in siRNA.

Why is a Pol III type promoter used for BLOCK-iT shRNA?

For efficient shRNA expression, a Pol III type promoter is used. These Pol III promoters contain all of their essential elements upstream of the expressed RNA and terminate with a short polythymidine tract. Once the shRNA is expressed, it is transported from the nucleus and processed into siRNA in the cytoplasm by the enzyme Dicer. Dicer preferentially recognizes shRNAs generated from a Pol III promoter because they carry no 5' or 3' flanking sequences. The siRNAs enter into RISC complexes and generate an RNAi response in mammalian cells.

Can I perform the single-step protocol for the BP/LR Clonase reaction using BP Clonase enzyme and LR Clonase enzyme instead of BP Clonase II enzyme and LR Clonase II enzyme?

In the single-step protocol for the BP/LR Clonase reaction, we would not recommend substituting the BP Clonase II/LR Clonase II enzymes with BP Clonase /LR Clonase enzymes as this would result in very low recombination efficiency.

Do you have a recommended single-step protocol for BP/LR recombination?

Yes, we have come up with a single-step protocol for BP/LR Clonase reaction (http://www.thermofisher.com/us/en/home/life-science/cloning/gateway-cloning.html#1), where DNA fragments can be cloned into Destination vectors in a single step reaction, allowing you to save time and money.

How can I move my gene of interest from a Gateway-adapted expression clone to a new Destination vector as I have lost the entry clone?

We would recommend performing a BP reaction with a Donor vector in order to obtain an entry clone. This entry clone can then be used in an LR reaction with the Destination vector to obtain the new expression clone.

Can I purchase the 5X LR Clonase buffer or 5X BP Clonase buffer separately?

We do not offer the 5X LR Clonase buffer and 5X BP Clonase buffer as standalone products. They are available as part of the enzyme kits.

Do you offer Gateway vectors for expression in plants?

We do not offer any Gateway vectors for expression in plants.

How do the BLOCK-iT shRNA products compare to the BLOCK-iT miR RNAi system?

Both systems are used for gene targeting or gene knockdown but each has distinctive features. The shRNA expression vectors like pENTR/U6 or pENTR/H1-TO use Pol III promoters, whereas the miRNA expression vectors are flexible to use more common and more processive Pol II promoters like CMV, EF1 or other mammalian expression promoters. You can only clone a single shRNA sequence into an shRNA vector to target a single gene, whereas multiple miRNA sequences can be cloned together into an miRNA vector to target one or more genes, or multiple locations in a gene. An additional feature of the miRNA expression vectors is that, due to use of Pol II promoters, the miRNA can be expressed directly in fusion with a reporter gene like EmGFP to monitor transfection and transcription.

Find additional tips, troubleshooting help, and resources within our RNAi Support Center.

I'm getting no fluorescence signal with my expression clone containing EmGFP. What should I do?

Please ensure that the recommended filter sets for detection of fluorescence are used. Use an inverted fluorescence microscope for analysis. If desired, allow the protein expression to continue for 1-3 days before assaying for fluorescence.

I'm seeing nonspecific, off-target gene knockdown. What should I do?

The target sequence used may contain strong homology to other genes; please select a different target region.

I am not getting any colonies after titering. What would suggest I try?

Perform a kill curve to determine the antibiotic sensitivity of your cell line. Ensure that viral stocks are stored properly at -80 degrees C, and do not undergo freeze/thaw more than 3 times. Lastly, transducer the lentiviral contruct into cells in the presence of Polybrene reagent.

I'm getting few or no colonies, even with the transformation control. What could be the cause of this?

Ensure that the competent cells used were stored properly at -80 degrees C, and thawed on ice for immediate use. When adding DNA, mix competent cells gently: do not mix by pipetting up and down. Also do not exceed the maximum recommended amount of DNA for transformation (100 ng) or allow the volume of DNA added to exceed 10% of the volume of the competent cells, as these may inhibit the transformation.

I'm not getting gene knockdown after tetracycline induction for my pENTR/H1/TO construct or Lenti4/BLOCK-iT-DEST construct experiment. What do you suggest I try?

The shRNA chosen may not be working. Verify that the shRNA sequence does not contain more than 3 tandem Ts which can cause premature transcription termination. You can try to select a different target region. Check the hairpin design for the shRNA. Ensure that the correct amounts of tetracycline were added. Cells should be treated 3-24 hours after transfection with tetracycline to induce shRNA expression. Assay for the target gene knockdown 24-96 hours following induction. Lastly, please check that the construct was transduced into a T-REx repressor-expressing cell line. (To create your own cell line that stably expresses the Tet repressor, use either pcDNA6/TR (for your pENTR/H1/TO construct) or pLenti6/TR (for your Lenti4/BLOCK-iT-DEST construct) and maintain the cell line in medium containing blasticidin.)

Find additional tips, troubleshooting help, and resources within our RNAi Support Center.

Can I use the pENTR/H1/TO or Lenti4/BLOCK-iT-DEST for constitutive expression?

Yes, as long as you do not use a cell line expressing the Tet repressor, expressing will be constitutive.

I'm seeing low levels of tetracycline-regulated gene knockdown when using the pENTR/H1/TO construct or the pLenti4/BLOCK-iT-DEST construct containing my shRNA of interest. What could be the cause of this?

Please review the following possibilities:

Low transfection efficiency - check plating confluency, amount of plasmid DNA used, and/or reagent used for transfection.
Time period - perform a time course of expression to determine the point at which the highest degree of gene knockdown occurs.
Ensure that the ds oligo insert is sequence-verified and does not contain mutations.
The shRNA sequence is important; you can vary the length of shRNA sequence, change or vary the loop sequence/length, reverse orientation of the shRNA hairpin, or select a different target region. If possible, screen shRNA first by transient transfection first.
Make sure that enough tetracycline was added.

If working with the lentiviral construct, please review the additional possibilities below:
Polybrene reagent not included during transduction - ensure that Polybrene reagent is present when transducing the lentiviral construct into cells.
Transduce your lentiviral construct into cells using a higher MOI.
Place cells under Zeocin selection and generate a stable cell line prior to addition of tetracycline, which can improve gene knockdown results by killing untransduced cells.
Titer viral stocks.
Store viral stocks correctly at -80 degrees C, do not freeze/thaw more than 3 times, and if stored for longer than 6 months, retiter stock before use.

Find additional tips, troubleshooting help, and resources within our RNAi Support Center.

I'm seeing some basal expression of my shRNA of interest in the absence of tetracycline induction when using the BLOCK-iT H1 construct or pLenti4/BLOCK-iT-DEST construct. What could be causing this?

Please check to ensure that your medium containing fetal bovine serum (FBS) is reduced in tetracycline. Many lots of FBS contain tetracycline, as FBS is often isolated from cows that have been fed a diet containing tetracycline, leading to low basal expression of shRNA. Ensure that a cell line expressing the Tet repressor is being used, and that the cells used are transduced at a suitable MOI. If creating your own Tet repressor-expressing cell line, wait at least 24 hours before transducing cells with your shRNA construct.

I'm seeing a low level of gene knockdown or no gene knockdown. What can you suggest I try?

Low expression levels can be due to several factors. Please see the suggestions below:

- Low transfection efficiency: ensure that antibiotics are not added to the media during transfection, and that cells are at the proper cell confluency; optimize transfection conditions by varying the amount of transfection reagent used.
- Try a time course assay to determine the point at which the highest degree of gene knockdown occurs.
- Mutations are present in your construct: analyze the transformants by sequencing the ds oligo insert to verify its sequence.
- Target region is not optimal: select a different target region.
- Ensure siRNA is designed according to guidelines listed in the respective manual.

Find additional tips, troubleshooting help, and resources within our RNAi Support Center.

I'm seeing cytotoxic effects after transfection of my shRNA/miRNA construct. What is causing this?

You can try to scale back the amount of transfection reagent used, or use a different reagent for the transfection. Additionally, ensure that the plasmid used is pure and properly prepared for transfection.

Find additional tips, troubleshooting help, and resources within our RNAi Support Center.

I'm having difficulty sequencing the ds oligo insert in my shRNA construct. What is causing this, and do you have any suggestions on how to improve my sequencing results?

Difficulties sequencing could occur because the hairpin sequence is an inverted repeat that can form secondary structure during sequencing, resulting in a drop in the sequencing signal when entering the hairpin. If you encounter difficulties while sequencing, please try the following:

- Use high-quality, purified plasmid DNA for sequencing. We recommend preparing DNA using the Invitrogen PureLink HQ Mini Plasmid Purification Kit (Cat. No. K2100-01) or S.N.A.P. Plasmid DNA MidiPrep Kit (Cat. No. K1910-01).
- Add DMSO to the sequencing reaction to a final concentration of 5%.
- Increase the amount of template used in the reaction (up to twice the normal concentration).
- Standard sequencing kits typically use dITP in place of dGTP to reduce G:C compression. Other kits containing dGTP are available for sequencing G-rich and GT-rich templates. If you are using a standard commercial sequencing kit containing dITP, obtain a sequencing kit containing dGTP (e.g., dGTP BigDye Terminator v3.0 Ready Reaction Cycle Sequencing Kit, Cat. No. 4390229) and use a 7:1 molar ratio of dITP:dGTP in your sequencing reaction.

I'm trying to create my entry clone but am seeing mutated inserts. What should I do?

We highly recommend sequencing positive transformants to confirm the sequence of the ds oligo insert. When screening transformants, we find that up to 20% of the clones may contain mutated inserts (generally 1 or 2 bp deletions within the ds oligo). The reason for this is not known, but may be due to triggering of repair mechanisms within E. coli as a result of the inverted repeat sequence within the ds oligo insert. Note: Entry clones containing mutated ds oligo inserts generally elicit a poor RNAi response in mammalian cells. Identify entry clones with the correct ds oligo sequence and use these clones for your RNAi analysis.
Mutated inserts could also be caused by using poor-quality single-stranded oligos. Use mass spectrometry to check for peaks of the wrong mass, or order HPLC- or PAGE-purified oligos to avoid this problem.

I'm trying to anneal my oligos to create a ds oligo for ligation into one of your shRNA or miRNA RNAi vectors. When I run my ligated ds oligo on an agarose gel, I do not see any bands representing the ds oligo. What could be happening?

- Verify that the sequence of the bottom-strand oligo is complementary to the sequence of the top-strand oligo.
- For the shRNA vectors, make sure that you mix single-stranded oligos with complementary sequences. The top-strand oligo should include CACC on the 5' end, while the bottom-strand oligo should include AAAA on the 5' end.
- For the miRNA vectors, make sure that the top-strand oligo includes TGCT at the 5' end and that the bottom-strand oligo includes CCTG at the 5' end.

I'm trying to anneal my oligos to create a ds oligo for ligation into one of your shRNA or miRNA RNAi vectors. When I run my ligated ds oligo on an agarose gel, the bands are weak. What could be happening?

Please review the possibilities below:

- Single-stranded oligos designed incorrectly; verify that the sequence of the bottom-strand oligo is complementary to the sequence of the top strand oligo.
- Ensure that oligos are annealed at room temp for 5-10 minutes after heating to 95 degrees C.
- Check the molar ratio you are using for annealing top and bottom-strand oligo; equal amounts should be used.

When performing RNAi knockdown studies with your lentiviral constructs, when should I start seeing inhibition of gene expression?

When performing RNAi studies using pLenti4/BLOCK-iT-DEST lentiviral constructs, we generally observe significant inhibition of gene expression within 48-120 hours after transduction. The degree of gene knockdown depends on the time of assay, stability of the protein of interest, and on the other factors. Note that 100% gene knockdown is generally not observed, but >80% is possible with optimized conditions.

What are the safety features of the BLOCK-iT Lentiviral RNAi Expression System?

The lentiviral and packaging vectors supplied in the BLOCK-iT Lentiviral RNAi Expression System are third-generation vectors based on lentiviral vectors developed by Dull et al., 1998. This third-generation lentiviral system includes a significant number of safety features designed to enhance its biosafety and to minimize its relation to the wild-type human HIV-1 virus. The BLOCK-iT Lentiviral RNAi Expression System includes the following key safety features:

- The pLenti6/BLOCK-iT-DEST expression vector contains a deletion in the 3' LTR (?U3) that does not affect generation of the viral genome in the producer cell line, but results in “self-inactivation” of the lentivirus after transduction of the target cell (Yee et al., 1987; Yu et al., 1986; Zufferey et al., 1998). Once integrated into the transduced target cell, the lentiviral genome is no longer capable of producing packageable viral genome.
- The number of genes from HIV-1 that are used in the system has been reduced to three (i.e., gag, pol, and rev).
- The VSV-G gene from Vesicular Stomatitis Virus is used in place of the HIV-1 envelope (Burns et al., 1993; Emi et al., 1991; Yee et al., 1994).
- Genes encoding the structural and viral genome packaging components are separated onto four plasmids. All four plasmids have been engineered not to contain any regions of homology with each other to prevent undesirable recombination events that could lead to the generation of a replication competent virus (Dull et al., 1998).
- Although the three packaging plasmids allow expression in trans of proteins required to produce viral progeny (e.g., gal, pol, rev, env) in the 293FT producer cell line, none of them contain LTRs or the ? packaging sequence. This means that none of the HIV-1 structural genes are actually present in the packaged viral genome, and thus, are never expressed in the transduced target cell. No new replication-competent virus can be produced.
- The lentiviral particles produced in this system are replication-incompetent and only carry the gene of interest. No other viral species are produced.
- Expression of the gag and pol genes from pLP1 has been rendered Rev dependent by virtue of the HIV-1 RRE in the gag/pol mRNA transcript. Addition of the RRE prevents gag and pol expression in the absence of Rev (Dull et al., 1998).
- A constitutive promoter (RSV promoter) has been placed upstream of the 5' LTR in the pLenti6/BLOCK-iT-DEST expression vector to offset the requirement for Tat in the efficient production of viral RNA (Dull et al., 1998).

Despite the inclusion of the safety features discussed on the previous page, the lentivirus produced with this system can still pose some biohazard risks since it can transduce primary human cells. For this reason, we highly recommend that you treat lentiviral stocks generated using this system as Biosafety Level 2 (BL-2) organisms and strictly follow all published BL-2 guidelines with proper waste decontamination. Furthermore, exercise extra caution when creating lentiviruses carrying potential harmful or toxic genes (e.g., activated oncogenes). For more information about the BL-2 guidelines and lentivirus handling, refer to the document “Biosafety in Microbiological and Biomedical Laboratories,”.

With regard to the promoter, H1 and U6, for the BLOCK-iT Lentiviral RNAi Expression System, is there a difference in knockdown?

Constitutive knockdown is virtually identical for these two promoters in HEK 293 cells. In other cell types there are reports that either H1 or U6 may be more active, though in general, differences are minimal.

What are the advantages of the BLOCK-iT Lentiviral RNAi expression system?

Use of the BLOCK-iT Lentiviral RNAi Expression System to facilitate lentiviral based delivery of shRNA to mammalian cells provides the following advantages:

- The pENTR/U6 entry vector provides a rapid and efficient way to clone ds oligo duplexes encoding a desired shRNA target sequence into a vector containing an RNA Pol III-dependent expression cassette (i.e., U6 RNAi cassette) for use in RNAi analysis.
- The vectors in the System are Gateway-adapted for easy recombination of the U6 RNAi cassette from the pENTR/U6 vector into the pLenti6/BLOCK-iT-DEST vector.
- Generates a replication-incompetent lentivirus that effectively transduces both dividing and nondividing mammalian cells, thus broadening the potential RNAi applications beyond those of other traditional retroviral systems (Naldini, 1998).
- Efficiently delivers the shRNA of interest to mammalian cells in culture or in vivo.
- Provides stable, long-term expression of the shRNA of interest beyond that offered by traditional adenovirus-based systems.
- Produces a pseudotyped virus with a broadened host range (Yee, 1999).
- Includes multiple features designed to enhance the biosafety of the system.

What does cytopathic effect mean?

Adenovirus is not an actively lytic virus, meaning that mature viral particles accumulate in the cell over the course of two to three days. As virus accumulates, the producer cell rounds up and eventually bursts due to the sheer number of virus particles inside. Once this occurs, neighboring cells become infected and the three-day cycle begins again. The term “cytopathic effect”, or CPE, is used to describe this and is typically visible within approximately 7 days posttransfection in the form of “comet-shaped” plaques resulting from two rounds of infection, replication and cell burst.

After 7 days, CPE will expand and eventually take over the plate by approximately 10 days posttransfection.
10 days are required to produce virus from a transfected dish of cells (as just described).
Once an initial viral stock is produced, it can be amplified directly by infection of fresh 293A cells at a multiplicity of infection (MOI) of 3.

What is the difference between infection and transduction?

Please see the definitions below:

Infection: Applies to situations where viral replication occurs and infectious viral progeny are generated. Only cell lines that stably express E1 can be infected.
Transduction: Applies to situations where no viral replication occurs and no infectious viral progeny are generated. Mammalian cell lines that do not express E1 are transduced. In this case, you are using adenovirus as a vehicle to deliver shRNA.

What are the general steps in creating an RNAi viral system?

Please see the steps below:

Clone the double-stranded DNA oligo encoding an shRNA or miR RNAi into one of the BLOCK-iT entry (shRNA) or expression (miR RNAi) vectors.
Transfer the RNAi cassette into the adenoviral (shRNA only) or lentiviral destination vector by Gateway recombination.
Transfect RNAi vectors into the viral producer cells to produce viral stocks, which can be used immediately or stored at -80 degrees C.
Harvest viral supernatants and determine the titer (amplify adenoviral stocks if desired).
Transduce lentiviral or adenoviral stocks to any cell type.

Find additional tips, troubleshooting help, and resources within our RNAi Support Center.