Search
Search
View additional product information for pcDNA™3.1 (+) Mammalian Expression Vector - FAQs (V79020)
33 product FAQs found
这里列举了一些可能的原因与解决方案:
•所用检测法可能不适当或不够灵敏: ◦我们推荐您优化检测方案或寻找更为灵敏的方法。如果使用考马斯亮蓝染色/银染法检测过该蛋白,我们则推荐您使用免疫印迹法来增加检测灵敏度。裂解产物中存在的内源蛋白可能会在考马斯亮蓝染色/银染过程中掩盖目的蛋白。如果可能,我们推荐您在免疫印迹实验中包括一个阳性对照。
•筛选到的克隆数不够:至少筛选出20个克隆。
•在稳转筛选中使用了不适当的抗生素浓度:请确保正确获取了抗生素的杀死曲线。由于某一既定抗生素的效力依赖于细胞类型,血清,培养基和培养技术,因此必须在每次进行稳定筛选的时候确定抗生素的用量。如果采用的培养基或血清条件明显不同,则即使是我们所提供的稳转细胞系对于我们推荐的剂量也可能出现更敏感或更不敏感的情况。
•基因产物(即使低水平)的表达可能与该细胞系的生长不相容(如毒性基因):使用一个可诱导的表达系统。
•阴性克隆可能由基因表达的关键载体位点处优先发生了线性化所致:在一个不影响表达的位点实施载体线性化,如在细菌抗药性标志物序列中。
这里列举了一些可能的原因与解决方案:
•尝试试剂盒自带的表达对照。
•可能的检测问题:
◦检测瞬转的表达蛋白可能有难度,因为转染效率可能过低,以致用于整个转染群体的评估手段无法成功实现检测。我们推荐您通过稳转筛选或采用能够逐个检测单一细胞的技术手段来优化您的转染操作。您也可尝试通过改变启动子或细胞类型来提高表达水平。
◦细胞中的蛋白表达水平对于所选择的检测方法来说可能过低。我们推荐您优化检测方案或寻找更为灵敏的方法。如果使用考马斯亮蓝染色/银染法检测过该蛋白,我们则推荐您使用免疫印迹法来增加检测灵敏度。裂解产物中存在的内源蛋白可能会在考马斯亮蓝染色/银染过程中掩盖目的蛋白。如果可能,我们推荐您在免疫印迹实验中包括一个阳性对照。
◾蛋白可能降解或截短了:使用Northern杂交进行检测。
◾可能的时程问题:由于蛋白表达随时间延长而发生的变化依赖该蛋白的天然属性,我们一般推荐您先获取一份表达的时程曲线。尝试进行一次时程分析将帮助您确定最优的表达时间窗。
◾可能的克隆问题:通过限制性酶切和/或测序来验证克隆。
不可以;新霉素对哺乳动物细胞有毒性。我们推荐您使用Geneticin(又称 G418硫酸盐),这一产品的毒性较低,是在哺乳动物细胞中进行有效筛选的新霉素的替代品。
即使缺乏Kozak序列,翻译也还是会在核糖体遇到的第一个ATG处启始,不过启始效率可能相对较低。只要处于最初ATG的阅读框内,任何下游的插入序列都可能表达为融合蛋白,不过如果这里没有Kozak保守序列,则蛋白的表达水平预期会比较低。如果载体中包含一个非Kozak型的保守ATG,我们则推荐您将基因克隆至该ATG上游,再包含一个Kozak序列来优化表达效果。
pcDNA3.1载体包含了转录起始位点之前截短的CMV核心启动子,而pcDNA 3.3-TOPO载体拥有672 bp完整的天然CMV启动子。天然的CMV启动子相比其他类型的表达载体能够产生超出二至五倍的表达蛋白得率。pcDNA3.1载体有限制性酶切,TOPO和Gateway克隆方式以及带标签和不带标签的版本可供选择,而pcDNA3.3-TOPO载体为TOPO TA改造的无标签载体,能够用于表达不含外源氨基酸的天然蛋白,因此成为了抗体生产与结构生物学的理想之选。
(+)和(-)指示符意味着这些载体中多克隆位点的方向。提供两种不同方向插入的克隆位点为用户提供了设计克隆方案的灵活性,举例来说,如果您的克隆需要按照Not I-Bam HI的方向插入,您就可选择这一载体的(-)版本。
Thermo Fisher Scientific不再提供pcDNA3载体,其慧姐替代产品为pcDNA3.1——后一载体源自于pcDNA3载体。原始pcDNA3载体多克隆位点(MCS)的中心包含了mRNA发卡结构的同源序列和Eag I,Not I和BstXI序列。这一发卡结构只会影响Not I位点下游插入基因的表达效率,如果这种影响存在的话。为了解决这一问题,我们移除了一些序列,包括Eag I位点,而BstXI序列也经过些许调整以降低同源性。一条源自pcDNA3载体,包含了Sp6引物位点的32碱基片段(介于995号碱基与1026号碱基之间)也被移去,替换为一条11碱基的片段,从而向pcDNA3.1载体的多克隆位点中引入了另一个PmeI限制性酶切位点。
我们提供pJTI R4 Exp CMV EmGFP pA载体,货号A14146,您可使用这一产品来监控转染和表达情况。
在小鼠细胞系中,人们已知CMV启动子的效率会随时间延长而逐渐下降。因此,我们推荐您使用一款非CMV型的载体,如EF1α或UbC启动子,以在小鼠细胞系中长时间表达蛋白。
保守的Kozak序列为A/G NNATGG,其中的ATG表示起始密码子。ATG周围的核苷酸点突变会影响翻译效率。尽管我们通常情况下都推荐加入一段Kozak保守序列,不过这一操作的必要性还是基于具体的目的基因,一般只需ATG就足以高效地启始翻译过程。最佳的建议是保持cDNA中天然起始位点,除非确定这一位点的功能性不理想。如果从表达的角度来考虑,推荐构建并测试两种载体,一个具有天然的起始位点,另一个具有保守的Kozak序列。通常情况下,所有具有N-融合表达的表达载体都已经包含了一个翻译起始位点。
ATG通常对于高效的翻译启始是足够的,尽管翻译效率要视目的基因而定。最佳的建议应是保持cDNA中天然起始位点,除非确定这一位点的功能性不理想。如果从表达的角度来考虑,推荐构建并测试两种载体,一个具有天然的起始位点,另一个具有保守的Kozak序列。通常情况下,所有N-端融合型表达载体都已包含了一个RBS或翻译起始位点。
原核生物mRNA含有Shine-Dalgarno序列,也称为核糖体结合位点(RBS),它是由AUG起始密码子5’端的多嘌呤序列AGGAGG组成。该序列与16S rRNA 3’端的互补,有助于mRNA有效结合到核糖体上。同理,真核生物(特别是哺乳动物)mRNA也含有完成有效翻译所需的重要序列信息。然而,Kozak序列不是真正的核糖体结合位点,而是一种翻译起始增强子。Kozak共有序列是ACCAUGG,其中AUG是起始密码子。-3位的嘌呤(A/G)具有重要作用;若-3位是一个嘧啶(C/T),翻译过程会对-1、-2和+4位的改变更敏感。当-3位从嘌呤变为嘧啶时,可使表达水平降低多达95%。+4位对表达水平的影响相对较小,可以使表达水平降低约50%。
注:果蝇的最佳Kozak序列稍有不同,酵母完全不遵循这些规则。见下列参考文献:
•Foreign Gene Expression in Yeast: a Review. Yeast, vol. 8, p. 423-488 (1992).
•Caveneer, Nucleic Acids Research, vol. 15, no. 4, p. 1353-1361 (1987).
Here are possible causes and solutions:
Detection method may not be appropriate or sensitive enough:
- We recommend optimizing the detection protocol or finding more sensitive methods. If the protein is being detected by Coomassie/silver staining, we recommend doing a western blot for increased sensitivity. The presence of endogenous proteins in the lysate may obscure the protein of interest in a Coomassie/silver stain. If available, we recommend using a positive control for the western blot.
- Insufficient number of clones screened: Screen at least 20 clones.
- Inappropriate antibiotic concentration used for stable selection: Make sure the antibiotic kill curve was performed correctly. Since the potency of a given antibiotic depends upon cell type, serum, medium, and culture technique, the dose must be determined each time a stable selection is performed. Even the stable cell lines we offer may be more or less sensitive to the dose we recommend if the medium or serum is significantly different.
- Expression of gene product (even low level) may not be compatible with growth of the cell line: Use an inducible expression system.
- Negative clones may result from preferential linearization at a vector site critical for expression of the gene of interest: Linearize the vector at a site that is not critical for expression, such as within the bacterial resistance marker.
Here are possible causes and solutions:
- Try the control expression that is included in the kit
Possible detection problem:
- Detection of expressed protein may not be possible in a transient transfection, since the transfection efficiency may be too low for detection by methods that assess the entire transfected population. We recommend optimizing the transfection efficiency, doing stable selection, or using methods that permit examination of individual cells. You can also increase the level of expression by changing the promoter or cell type.
- Expression within the cell may be too low for the chosen detection method. We recommend optimizing the detection protocol or finding more sensitive methods. If the protein is being detected by Coomassie/silver staining, we recommend doing a western blot for increased sensitivity. The presence of endogenous proteins in the lysate may obscure the protein of interest in a Coomassie/silver stain. If available, we recommend using a positive control for the western blot.
Protein might be degraded or truncated: Check on a Northern.
Possible time-course issue: Since the expression of a protein over time will depend upon the nature of the protein, we always recommend doing a time course for expression. A pilot time-course assay will help to determine the optimal window for expression.
Possible cloning issues: Verify clones by restriction digestion and/or sequencing.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
No; neomycin is toxic to mammalian cells. We recommend using Geneticin (a.k.a. G418 Sulfate), as it is a less toxic and very effective alternative for selection in mammalian cells.
Translation initiation will occur at the first ATG encountered by the ribosome, although in the absence of a Kozak sequence, initiation will be relatively weak. Any insert downstream would express a fusion protein if it is in frame with this initial ATG, but levels of expressed protein are predicted to be low if there is a non-Kozak consensus sequence. If the vector contains a non-Kozak consensus ATG, we recommend that you clone your gene upstream of that ATG and include a Kozak sequence for optimal expression.
pcDNA3.1 vectors contain the core CMV promoter that is truncated before the start of transcription, whereas the pcDNA 3.3-TOPO vector has the 672 bp native CMV promoter. This native CMV promoter allows high-level gene expression with two- to five-fold higher protein yields compared to other expression vectors. pcDNA3.1 vectors are available in restriction, TOPO, and Gateway cloning versions and as untagged and epitope-tagged versions, whereas the pcDNA3.3-TOPO vector is a TOPO TA-adapted, untagged vector that can be used to express native proteins without extraneous amino acids, and is hence ideal for antibody production and structural biology.
The (+) and (-) designations refer to the orientation of the multiple cloning sites in these vectors. The availability of the cloning site in two orientations facilitates flexibility in cloning scheme design, so that if, for example, your insert must clone in as a Not I to Bam HI orientation, you may choose the (-) version of these vectors.
pcDNA3 is no longer available from Thermo Fisher Scientific but has been directly replaced by pcDNA3.1, which was derived from pcDNA3. The center of the multiple cloning site (MCS) within the original pcDNA3 vector contained homology to a hairpin mRNA structure and involved the Eag I, Not I, and both BstXI sequences. This hairpin would only have affected expression of genes cloned downstream of the Not I site, if at all. To address this issue, some sequences were removed, including the Eag I site, and the BstXI sequences were slightly modified to reduce homology. A 32-base fragment from pcDNA3 (between bases 995 and 1026), which contains the Sp6 primer site, was also removed and 11 bases were inserted in its place, adding another PmeI restriction site into the MCS of pcDNA3.1.
Here are the links to the vector sequences for pcDNA3, pcDNA3.1(+), and pcDNA3.1(−):
http://tools.thermofisher.com/content/sfs/vectors/pcdna3_seq.txt
http://tools.thermofisher.com/content/sfs/vectors/pcdna3_1p_seq.txt
http://tools.thermofisher.com/content/sfs/vectors/pcdna3.1-_seq.txt
We offer pJTI R4 Exp CMV EmGFP pA Vector, Cat. No. A14146, which you can use to monitor your transfection and expression.
The CMV promoter is known to be downregulated over time in mouse cell lines. Hence, we recommend using one of our non-CMV vectors, such as those with the EF1alpha or UbC promoter, for long-term expression in mouse cell lines.
The consensus Kozak sequence is A/G NNATGG, where the ATG indicates the initiation codon. Point mutations in the nucleotides surrounding the ATG have been shown to modulate translation efficiency. Although we make a general recommendation to include a Kozak consensus sequence, the necessity depends on the gene of interest and often, the ATG alone may be sufficient for efficient translation initiation. The best advice is to keep the native start site found in the cDNA unless one knows that it is not functionally ideal. If concerned about expression, it is advisable to test two constructs, one with the native start site and the other with a consensus Kozak. In general, all expression vectors that have an N-terminal fusion will already have an initiation site for translation.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
ATG is often sufficient for efficient translation initiation although it depends upon the gene of interest. The best advice is to keep the native start site found in the cDNA unless one knows that it is not functionally ideal. If concerned about expression, it is advisable to test two constructs, one with the native start site and the other with a Shine Dalgarno sequence/RBS or consensus Kozak sequence (ACCAUGG), as the case may be. In general, all expression vectors that have an N-terminal fusion will already have a RBS or initiation site for translation.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
No. While transcripts will usually be made, there is no ribosome binding site (RBS) or Shine-Dalgarno sequence to initiate translation. Furthermore, these vectors do not contain a prokaryotic transcription terminator.
Although not required, if you would like to linearize pcDNA3.1 vector prior to stable transfection, Pvu I or Sca I are single-cutter enzymes that cut within the ampicillin resistance gene and should work well.
pcDNA3.1 vector, as with most vectors which contain what is described as the SV40 polyA region, actually contains 3 polyA signals, two on one strand and one on the other. Wild type SV40 virus has transcription going in both directions at different parts of its cycles (early and late), and transcripts from both directions get polyadenylated in the small region that contains these three signals.
In pcDNA3.1 vector, the SV40 poly A recognition site for the Neomycin resistance gene is AAATAAA and is located at 3148 and 3177 in the SV40 Poly A.
It has been reported that pCDNA3.1 may have a cryptic E. coli promoter that will often express your gene in E. coli when your gene is in the correct orientation for eukaryotic expression. The level of toxicity to E. coli will depend on your particular gene product and on the efficiency of translation initiation. This problem can be solved by placing a prokaryotic transcription terminator at the Hind III site, upstream of your gene. Eukaryotic expression will not be altered by this additional sequence.
Here's a cloning scheme for cutting out the Neomycin resistance cassette from pcDNA3.1 (-) vector, including the SV40 promoter and SV40 polyA signal:
At bp 1726 use either: Asp 700I, Mro XI, or XmnI (blunt). These enzymes also cut at 5107.
At bp 3237 use either: Bss NAI, Bst 1107I, or Bst 217I (blunt). Isolate the 1.5 kb fragment.
Prokaryotic mRNAs contain a Shine-Dalgarno sequence, also known as a ribosome binding site (RBS), which is composed of the polypurine sequence AGGAGG located just 5’ of the AUG initiation codon. This sequence allows the message to bind efficiently to the ribosome due to its complementarity with the 3’-end of the 16S rRNA. Similarly, eukaryotic (and specifically mammalian) mRNA also contains sequence information important for efficient translation. However, this sequence, termed a Kozak sequence, is not a true ribosome binding site, but rather a translation initiation enhancer. The Kozak consensus sequence is ACCAUGG, where AUG is the initiation codon. A purine (A/G) in position -3 has a dominant effect; with a pyrimidine (C/T) in position -3, translation becomes more sensitive to changes in positions -1, -2, and +4. Expression levels can be reduced up to 95% when the -3 position is changed from a purine to pyrimidine. The +4 position has less influence on expression levels where approximately 50% reduction is seen. See the following references:
- Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283-292.
- Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947-950.
- Kozak, M. (1987) An analysis of 5´-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125-8148.
- Kozak, M. (1989) The scanning model for translation: An update. J. Cell Biol. 108, 229-241.
- Kozak, M. (1990) Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res. 18, 2828.
Note: The optimal Kozak sequence for Drosophila differs slightly, and yeast do not follow this rule at all. See the following references:
- Romanos, M.A., Scorer, C.A., Clare, J.J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423-488.
- Cavaneer, D.R. (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 15, 1353-1361.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
Our vectors have not been completely sequenced. Your sequence data may differ when compared to what is provided. Known mutations that do not affect the function of the vector are annotated in public databases.
No, our vectors are not routinely sequenced. Quality control and release criteria utilize other methods.
Sequences provided for our vectors have been compiled from information in sequence databases, published sequences, and other sources.
Eukaryotic (and specifically mammalian) mRNA contains sequence information that is important for efficient translation. However, this sequence, termed a Kozak sequence, is not a true ribosome binding site, but rather a translation initiation enhancer. The Kozak consensus sequence is ACCAUGG, where AUG is the initiation codon. A purine (A/G) in position -3 has a dominant effect; with a pyrimidine (C/T) in position -3, translation becomes more sensitive to changes in positions -1, -2, and +4. Expression levels can be reduced up to 95% when the -3 position is changed from a purine to pyrimidine. The +4 position has less influence on expression levels where approximately 50% reduction is seen. See the following references:
Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283-292.
Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947-950.
Kozak, M. (1987) An analysis of 5´-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125-8148.
Kozak, M. (1989) The scanning model for translation: An update. J. Cell Biol. 108, 229-241.
Kozak, M. (1990) Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res. 18, 2828.
Note: The optimal Kozak sequence for Drosophila differs slightly, and yeast do not follow this rule at all. See the following references:
Romanos, M.A., Scorer, C.A., Clare, J.J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423-488.
Cavaneer, D.R. (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 15, 1353-1361.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.