Search
Search
查看更多产品信息 pYES2 Yeast Expression Vector - FAQs (V82520)
42 个常见问题解答
以下是用于培养Pichia pastoris和S. cerevisia的营养丰富型和基本培养基:
营养丰富型培养基:
适用于S. cerevisiae和Pichia pastoris
•YPD(YEPD):酵母提取物、蛋白胨和葡聚糖
•YPDS:酵母提取物、蛋白胨、葡聚糖和山梨醇
仅适用于Pichia pastoris
•BMGY:缓冲型甘油复合培养基
•BMMY:缓冲型甲醇复合培养基
基本培养基(又名缺陷型培养基):
适用于S. cerevisiae
•SC(SD):完全合成培养基(YNB、葡聚糖(或棉籽糖或半乳糖)以及氨基酸)
适用于Pichia pastoris
•MGY:基本甘油培养基
•MD:基本葡聚糖培养基
•MM:基本甲醇培养基
•BMGH:缓冲型基本甘油培养基
•BMMH:缓冲型基本甲醇培养基
当α因子基因中的P因子被替换为α时,S. pombe不能生成P因子。但是,当P因子基因中的α因子被替换为P时,S. pombe能够生成α因子。有反面证据表明,S. pombe能够加工其自身的交配因子切割位点,但并不是S. cerevisiae α因子的所有切割位点。最好使用一个更通用的信号序列(而不是前导信号序列,如α)。如果必须走前导路线,最好使用S. pombe的P因子前导而不是S. cerevisiae的α前导。
在诱导期间,一些研究人员选择使酵母生长在以2%半乳糖作为唯一碳源的培养基中。但是,在含2%半乳糖和2%棉籽糖的诱导培养基中,酵母通常生长更快。棉籽糖是酵母的良好碳源,与葡萄糖不同,棉籽糖不会抑制GAL启动子的转录。棉籽糖是由半乳糖、葡萄糖和果糖依次连接而形成的三糖。大部分酵母可切割葡萄糖-果糖键,但不会切割半乳糖-葡萄糖键。果糖随后被用作碳源。
我们提供INVSc1酵母株。这是一种二倍体酵母株,仅作表达用途。该酵母株不能形成良好的孢子,因此不适用于酵母遗传研究。INVSc1酵母株的基因型和表型如下:
基因型:MATa his3Δ1 leu2 trp1-289 ura3-52/MATα his3Δ1 leu2 trp1-289 ura3-52
表型:His-, Leu-, Trp-, Ura-
注意:INVSc1缺乏组氨酸、亮氨酸、色氨酸和尿嘧啶。该酵母株在缺乏组氨酸、亮氨酸、色氨酸和尿嘧啶的SC基本培养基中不能生长。
TE、醋酸锂和PEG的储液可保存。但是,制备待转化细胞的混合溶液,必须每次现用现配。如果溶液不是新配制的,则可能损失转化效率。
OD600值为0.1,约等于3 x 106细胞/毫升。
转化效率很大程度上取决于酵母株,范围为1000-100,000个转化株/微克 DNA。
以下是用于S. cerevisiae转化的不同方法:
•S. cerevisiae EasyComp转化试剂盒:易于使用的即用型试剂 ◦感受态细胞可冻存。转化效率高于103转化株/微克 DNA。与使用新鲜制备的细胞相比,使用冻存细胞可得到更高的转化效率。
•小规模酵母转化实验方案(见使用手册第13页)
•醋酸锂转化:简单、自己动手的实验方案 ◦感受态细胞必须是新鲜制备的
•电穿孔:简单、高效,自己动手的实验方案 ◦感受态细胞必须是新鲜制备的
•原生质球试剂盒:高效,工作量大,不适用于抗生素筛选
注意:选择适当的接种密度。菌落将在几天内出现。不要挑选最大的菌落,因为它们通常为抑制子。
我们建议将酵母置于15%甘油中保存在–80°C。甘油储液可长期保存(除非经过多次冻融)。在制备甘油储液时,我们建议使用过夜培养物并将其浓缩2-4倍。将细胞离心,并使用原始体积25–50%的甘油/培养基重悬。最好使用新鲜培养基加甘油冻存细胞,而不仅仅是将甘油加到过夜培养物中这么简单。
我们提供original Pichia pastoris表达系统、PichiaPink表达系统和Saccharomyces cerevisiae酿酒酵母表达系统,用于重组蛋白表达。已知P. pastoris和S. cerevisiae遗传性质已十分明确,均可进行多种翻译后修饰。
P. pastoris毕赤酵母表达系统结合了大肠杆菌表达(高水平表达、易于扩大规模和低成本)和真核系统表达(蛋白加工、折叠和翻译后修饰)的优势,从而可对有功能活性的重组蛋白进行高水平生产。作为一种酵母,毕赤酵母Pichia pastoris与酿酒酵母Saccharomyces cerevisiae具有相似的分子和基因操作优势,而且其外源蛋白表达水平比酿酒酵母Saccharomyces cerevisiae高10-100倍。这些特性使毕赤酵母Pichia pastoris 非常适合用作蛋白表达系统。Pichia表达载体含有强乙醇氧化酶(AOX1)启动子,用于高水平、严格调控的诱导型的表达;或者含有甘油醛-3-磷酸脱氢酶(GAP)启动子,用于高水平的组成型表达。诱导型和组成型表达构建体均整合到P. pastoris基因组,建立蛋白表达水平极高的稳定宿主,特别是在使用发酵器的情况下。我们可提供的Pichia pastoris表达系统包括:
•PichiaPink酵母表达系统:最新的Pichia pastoris表达系统包含低拷贝和高拷贝质粒骨架、8种分泌信号序列和4种酵母菌株,这些有助于优化得到最高的重组蛋白产率。所有PichiaPink载体都含有AOX1启动子,用于高水平诱导型表达;还含有ADE2标记物,利用ADE2互补作用筛选转化株(即腺嘌呤缺陷型的互补)而不是抗生素筛选。但是,它们通过不同长度的启动子表达ADE2基因产物,从而决定了整合质粒的拷贝数。在pPink-LC载体中,ADE2标记物的启动子为82 bp,可提供低拷贝表达;在pPink-HC载体,ADE2标记物的启动子为13 bp,可提供高拷贝表达。该系统也可诱导pPinkα-HC载体(含S. cerevisiae α-交配因子前导序列)产生高拷贝数分泌表达,并且还包含8种分泌信号序列可优化分泌表达。
•EasySelect Pichia表达试剂盒:一种传统Pichia 表达试剂盒,包含pPICZ和pPICZα载体,可分别用于目的基因的细胞内和分泌表达。这些载体含有AOX1启动子,可产生高水平的诱导型表达;还含有Zeocin抗生素抗性标记物,可直接进行多拷贝整合载体的筛选。它们有助于对表达的蛋白进行简单的亚克隆、纯化以及快速检测。
•Original Pichia表达试剂盒:该试剂盒包含pPIC9、pPIC3.5、pHIL-D2和pHIL-S1载体,每种载体都含有AOX1启动子,可产生高水平的诱导型表达;还含有HIS4基因,用于在缺乏组氨酸的培养基上筛选his4酵母株。pPIC9带有S. cerevisiae α-因子分泌信号,而pHIL-S1带有Pichia pastoris碱性磷酸酶信号序列(PHO),可指导蛋白质向培养基的转运。pHIL-D2和pPIC3.5专为细胞内表达而设计。
•多拷贝Pichia表达试剂盒:该试剂盒专为最大化表达而设计,包含pPIC3.5K、pPIC9K和pAO815载体,可产生和选择含多个目的基因的Pichia菌株。它们可通过体内方法(pPIC3.5K和pPIC9K)或体外方法(pAO815)分离和生成多拷贝插入片段。所有这些载体都含有AOX1启动子,可产生高水平的诱导型表达;还含有HIS4基因,用于在缺乏组氨酸的培养基上筛选his4菌株。pPIC9K载体可指导表达蛋白的分泌,而从pPIC3.5K和pAO815载体表达的蛋白仍留在细胞内。pPIC9K和pPIC3.5K载体带有卡那霉素抗性标记物,从而使Pichia对Geneticin试剂产生抗性。可通过Geneticin试剂抗性水平高低来鉴定自发的多次插入事件。在缺乏组氨酸的培养基上对Pichia转化株进行筛选,并筛选它们对Geneticin试剂的抗性水平。在高浓度Geneticin试剂中的生长能力,表示多拷贝的卡那霉素抗性基因以及目的基因被整合到了基因组。
为实现在S. cerevisiae中的表达,我们提供pYES 载体系列。每个pYES载体都带有GAL1基因的启动子和增强子序列,可实现诱导型表达。GAL1启动子是使用最广泛的酵母启动子之一,因为它在半乳糖的诱导下具有很强的转录活性。pYES载体还具有2 µ复制起点,可以维持游离的高拷贝数(10-40拷贝/细胞)。
酵母是一种单细胞的真核生物,在成分确定培养基中可快速生长(在含葡萄糖培养基中的倍增时间通常为2.5小时),相比使用昆虫或哺乳细胞生产重组蛋白更简单、更便宜(见下表)。这些良好的特性使酵母适用于从多孔培养板、摇瓶和持续搅拌槽生物反应器到小型试验工厂和工业规模反应器等多种形式的蛋白制备。
实验室最常用的酵母种类是酿酒酵母(Saccharomyces cerevisiae,又名Baker或Brewer酵母)和一些毕赤酵母属(Pichia)的甲醇营养型酵母。S. cerevisiae和P. pastoris的遗传性质均已明确,并能够对蛋白进行翻译后修饰,包括二硫键形成和糖基化,这对于一些重组蛋白发挥正常功能具有重要作用。但是,应注意酵母的糖基化与哺乳细胞的有所不同:在S. cerevisiae中,O-连接的寡糖只有甘露糖残基,而更高等的真核蛋白有唾液酸化的O-连接糖链。此外,已知S. cerevisiae可过度糖基化N-端位点,从而导致蛋白质结合和活性发生改变,并可能在治疗应用中产生异常的免疫原应答。在P. pastoris中,寡糖链的长度短很多,并且已有一个P. pastoris株被报导可产生复杂的、末端唾液酸化的或“人源化”的糖蛋白。
ATG通常对于高效的翻译启始是足够的,尽管翻译效率要视目的基因而定。最佳的建议应是保持cDNA中天然起始位点,除非确定这一位点的功能性不理想。如果从表达的角度来考虑,推荐构建并测试两种载体,一个具有天然的起始位点,另一个具有保守的Kozak序列。通常情况下,所有N-端融合型表达载体都已包含了一个RBS或翻译起始位点。
原核生物mRNA含有Shine-Dalgarno序列,也称为核糖体结合位点(RBS),它是由AUG起始密码子5’端的多嘌呤序列AGGAGG组成。该序列与16S rRNA 3’端的互补,有助于mRNA有效结合到核糖体上。同理,真核生物(特别是哺乳动物)mRNA也含有完成有效翻译所需的重要序列信息。然而,Kozak序列不是真正的核糖体结合位点,而是一种翻译起始增强子。Kozak共有序列是ACCAUGG,其中AUG是起始密码子。-3位的嘌呤(A/G)具有重要作用;若-3位是一个嘧啶(C/T),翻译过程会对-1、-2和+4位的改变更敏感。当-3位从嘌呤变为嘧啶时,可使表达水平降低多达95%。+4位对表达水平的影响相对较小,可以使表达水平降低约50%。
注:果蝇的最佳Kozak序列稍有不同,酵母完全不遵循这些规则。见下列参考文献:
•Foreign Gene Expression in Yeast: a Review. Yeast, vol. 8, p. 423-488 (1992).
•Caveneer, Nucleic Acids Research, vol. 15, no. 4, p. 1353-1361 (1987).
Following are the rich and minimal media used for culturing Pichia pastoris and S. cerevisiae:
Rich Media:
S. cerevisiae and Pichia pastoris
YPD (YEPD): yeast extract, peptone, and dextrose
YPDS: yeast extract, peptone, dextrose, and sorbitol
Pichia pastoris only
BMGY: buffered glycerol-complex medium
BMMY: buffered methanol-complex medium
Minimal Media (also known as drop-out media):
S. cerevisiae
SC (SD): Synthetic complete (YNB, dextrose (or raffinose or galactose), and amino acids)
Pichia pastoris
MGY: minimal glycerol medium
MD: minimal dextrose
MM: minimal methanol
BMGH: buffered minimal glycerol
BMMH: buffered minimal methanol
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
S. pombe cannot generate P factor when P factor is replaced for alpha in the alpha factor gene. It can, however, produce alpha factor when alpha is replaced for P in the P factor gene. This is negative evidence that S. pombe can process its own mating factor cleavage sites, but not all the cleavage sites of the S. cerevisiae alpha factor. It is better to use a more generic signal sequence (rather than a pre- pro- signal sequence such as alpha). If it is necessary to go the pre- pro- route, it is better to use the S. pombe P factor leader rather than the S. cerevisiae alpha leader.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
Some researchers choose to grow yeast in medium containing 2% galactose as the sole carbon source during induction. However, yeast typically grow more quickly in induction medium containing 2% galactose plus 2% raffinose. Raffinose is a good carbon source for yeast, and unlike glucose, does not repress transcription from the GAL promoter. Raffinose is a trisaccharide of galactose, glucose, and fructose linked in that order. Most yeast can cleave the glucose-fructose bond, but not the galactose-glucose bond. Fructose is then used as a carbon source.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
We offer the INVSc1 yeast strain. It is a diploid strain for expression purposes only. It does not sporulate well and is therefore not suited for yeast genetic studies. The genotype and phenotype of the INVSc1 strain are as follows:
Genotype: MATa his3D1 leu2 trp1-289 ura3-52/MATalpha his3D1 leu2 trp1-289 ura3-52
Phenotype: His-, Leu-, Trp-, Ura-
Note that INVSc1 is auxotrophic for histidine, leucine, tryptophan, and uracil. The strain will not grow in SC minimal medium that is deficient in histidine, leucine, tryptophan, and uracil.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
Stock buffers of TE, lithium acetate, and PEG can be stored. However, the combined solution used to prepare the cells for transformation must be made fresh every time. There is a loss in transformation efficiency if the solutions are not freshly prepared.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
OD600 of 0.1 = approximately 3 x 10e6 cells/mL
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
The efficiency is very strain-dependent, but 1000 to 100,000 transformants per µg DNA is the range.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
Here are the different methods available for S. cerevisiae transformation:
- S. cerevisiae EasyComp Transformation Kit (K505001): easy-to-use, ready-made reagents
Competent cells can be stored frozen. Transformation efficiency is >10e3 transformants per µg DNA. Higher transformation efficiencies are often obtained with frozen versus freshly prepared cells.
- Small-scale yeast transformation protocol (page 13 of the manual)
- Lithium acetate transformation: easy, do-it-yourself protocol
Competent cells must be made fresh
- Electroporation: easy and high efficiency, do-it-yourself protocol
Competent cells must be made fresh
- Spheroplast Kit for Yeast (K172001): high efficiency, a lot of work, not suitable for antibiotic selection
Note: Plate an appropriate density. Colonies will appear over several days. Don't pick the largest colonies, as these are often suppressors.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
We recommend storing yeast frozen at -80 degrees C in 15% glycerol. Glycerol stocks are good indefinitely (unless there are numerous freeze-thaws). When making a glycerol stock, we recommend using an overnight culture and concentrating it 2-4 fold. Spin down cells and suspend in 25-50% of the original volume with glycerol/medium. It is better to store frozen cells in fresh medium plus glycerol, rather than simply adding glycerol into the overnight culture.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
We offer the original Pichia pastoris expression systems, PichiaPink expression system, and Saccharomyces cerevisiae yeast expression system for expression of recombinant proteins. Both P. pastoris and S. cerevisiae have been genetically well-characterized and are known to perform many posttranslational modifications.
The P. pastoris expression system combines the benefits of expression in E. coli (high-level expression, easy scale-up, and inexpensive growth) and the advantages of expression in a eukaryotic system (protein processing, folding, and posttranslational modifications), thus allowing high-level production of functionally active recombinant protein. As a yeast, Pichia pastoris shares the advantages of molecular and genetic manipulations with Saccharomyces cerevisiae, and it has the added advantage of 10- to 100-fold higher heterologous protein expression levels. These features make Pichia pastoris very useful as a protein expression system. The Pichia expression vectors contain either the powerful alcohol oxidase (AOX1) promoter for high-level, tightly controlled expression, or the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter for high-level, constitutive expression. Both inducible and constitutive expression constructs integrate into the P. pastoris genome, creating a stable host that generates extremely high protein expression levels, particularly when used in a fermentor. The Pichia pastoris expression systems we offer include:
- PichiaPink Yeast Expression System: Newer Pichia pastoris expression system that contains both low- and high-copy plasmid backbones, 8 secretion signal sequences, and 4 yeast strains to help optimize for the highest yield possible of the recombinant protein. All PichiaPink vectors contain the AOX1 promoter for high-level, inducible expression and the ADE2 marker for selecting transformants using ADE2 complementation (i.e., by complementation of adenine auxotrophy) rather than antibiotic selection. However, they express the ADE2 gene product from promoters of different lengths, which dictate the copy number of the integrated plasmids. The pPink-LC vector has an 82 bp promoter for the ADE2marker and offers low-copy expression, and the pPink-HC vector has a 13 bp promoter for the ADE2marker and offers high-copy expression. The system also includes the pPinkalpha-HC vector (containing S. cerevisiae alpha-mating factor pre-sequence) for high copy number secreted expression, and provides eight secretion signal sequences for optimization of secreted expression.
- EasySelect Pichia Expression Kit: One of the original Pichia expression kits that contains the pPICZ and pPICZalpha vectors, for intracellular and secreted expression, respectively, of the gene of interest. These vectors contain the AOX1 promoter for high-level, inducible expression and the Zeocin antibiotic resistance marker for direct selection of multi-copy integrants. They facilitate simple subcloning, simple purification, and rapid detection of expressed proteins.
- Original Pichia Expression Kit: The kit includes the pPIC9, pPIC3.5, pHIL-D2, and pHIL-S1 vectors, each of which carries the AOX1 promoter for high-level, inducible expression and the HIS4 gene for selection in his4 strains, on histidine-deficient medium. pPIC9 carries the S. cerevisiae alpha-factor secretion signal while pHIL-S1 carries the Pichia pastoris alkaline phosphatase signal sequence (PHO) to direct transport of the protein to the medium. pHIL-D2 and pPIC3.5 are designed for intracellular expression.
- Multi-Copy Pichia Expression Kit: This kit is designed to maximize expression and contains the pPIC3.5K, pPIC9K, and pAO815 vectors, which allow production and selection of Pichia strains that contain more than one copy of the gene of interest. They allow isolation and generation of multicopy inserts by in vivo methods (pPIC3.5K and pPIC9K) or in vitro methods (pAO815). All of these vectors contain the AOX1 promoter for high-level, inducible expression and the HIS4 gene for selection in his4 strains, on histidine-deficient medium. The pPIC9K vector directs secretion of expressed proteins while proteins expressed from pPIC3.5K and pAO815 remain intracellular. The pPIC9K and pPIC3.5K vectors carry the kanamycin resistance marker that confers resistance to Geneticin Reagent in Pichia. Spontaneous generation of multiple insertion events can be identified by resistance to increased levels of Geneticin Reagent. Pichia transformants are selected on histidine-deficient medium and screened for their level of resistance to Geneticin Reagent. The ability to grow in high concentrations of Geneticin indicates that multiple copies of the kanamycin resistance gene and the gene of interest are integrated into the genome.
- For expression in S. cerevisiae, we offer the pYES Vector Collection. Each pYES vector carries the promoter and enhancer sequences from the GAL1 gene for inducible expression. The GAL1 promoter is one of the most widely used yeast promoters because of its strong transcriptional activity upon induction with galactose. pYES vectors also carry the 2m origin and are episomally maintained in high copy numbers (10-40 copies per cell).
Yeast is a single-celled, eukaryotic organism that can grow quickly in defined media (doubling times are typically 2.5 hr in glucose-containing media) and is easier and less expensive to use for recombinant protein production than insect or mammalian cells (see table below). These positive attributes make yeast suitable for use in formats ranging from multi-well plates, shake flasks, and continuously stirred tank bioreactors to pilot plant and industrial-scale reactors.
The most commonly employed species in the laboratory are Saccharomyces cerevisiae (also known as Baker's or Brewer's yeast) and some methylotrophic yeasts of the Pichia genus. Both S. cerevisiae and P. pastoris have been genetically characterized and shown to perform the posttranslational disulphide bond formation and glycosylation that is crucial for the proper functioning of some recombinant proteins. However, it is important to note that yeast glycosylation does differ from that in mammalian cells: in S. cerevisiae, O-linked oligosaccharides contain only mannose moieties, whereas higher eukaryotic proteins have sialylated O-linked chains. Furthermore S. cerevisiae is known to hyperglycosylate N-linked sites, which can result in altered protein binding, activity, and potentially yield an altered immunogenic response in therapeutic applications. In P. pastoris, oligosaccharides are of much shorter chain length and a strain has been reported that can produce complex, terminally sialylated or humanized glycoproteins.
ATG is often sufficient for efficient translation initiation although it depends upon the gene of interest. The best advice is to keep the native start site found in the cDNA unless one knows that it is not functionally ideal. If concerned about expression, it is advisable to test two constructs, one with the native start site and the other with a Shine Dalgarno sequence/RBS or consensus Kozak sequence (ACCAUGG), as the case may be. In general, all expression vectors that have an N-terminal fusion will already have a RBS or initiation site for translation.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
S. cerevisiae can grow using either or both mechanisms of carbon metabolism. The balance between the two is different for glucose vs. galactose as a carbon source. Under ideal conditions, S. cerevisiae grows slower on galactose than on glucose, because production of glucose-6-P from galactose is rate limiting. (gal -> gal-1-P -> glu-1-P -> glu-6-P). Under non-ideal conditions (low oxygen, as in the center of a colony or a culture without really good oxygen feed), it becomes even worse because cells grown on galactose are using more respiration than fermentation relative to cells grown on glucose. Low oxygen makes fermentation more necessary, which cells growing on galactose are not good at.
Glucose will shut down completely expression from the GAL1 promoter. Glucose causes repression of the Gal1 promoter.
The doubling time of a pYES2 transformed S. cerevisiae strain grown on minimal media with glucose is approximately 2 hours. The doubling time on media with galactose is approximately 4 hours.
The 2 micron plasmid occurs naturally in some strains of S. cerevisae. When a plasmid contains the 2 micron origin of replication it is maintained at 10-40 copies per cell.
As with other sugars (e.g. glucose), D-raffinose is the biologically active carbon source for yeast. Pure L-raffinose will not work.
The suggested initial cell density for galactose induction is 1 to 5 X 10E6 cells/ml . The cells are allowed to divide one or two times and then induced with galactose. Galactose induction is best in log phase and the culture will probably approach static phase at 1 to 4 X 10E7 cells/ml. Induction of cells maintained in raffinose may begin in 15 to 30 minutes whereas induction of cells maintained in glucose may not first occur for an hour or more. Peak expression will often occur in 2 - 4 hours so time points should be taken every hour (or every other hour) for up to 10 hours. When using raffinose maintained cells, the induction is much faster than induction of glucose maintained cells. Maximal expression levels remain the same.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
Although there are no other genes on the plasmid that are induced, there certainly are a number of proteins in the cell that are turned on by galactose and any of those may be apparent. As with any experiment, one should always run the plasmid without insert, induced with galactose as a negative control. The additional bands could be due to post-translational modifications, such as glycosylation, that would increase the apparent molecular weight. Since the size of the sugar chains can be variable, glycosylated proteins often appear as less well defined bands compared to non-glycosylated proteins.
pYES2 does not have a CEN sequence. pYES2 has the 2µ ori which maintains a copy number of 30 to 50 copies per cell. The 2µ ori sequence is derived from the endogenous 2µ circle plasmid (it's the replication origin for 2µ circle).
'CEN' stands for 'CENtromere' sequence. This origin of replication keeps the copy number of that vector down to one or two per cell in yeast. CEN sequences are actual chromosome centromere sequences. CEN ori will keep copy number to 1 or 2 per cell (depending on whether the cell is haploid or diploid). This sequence allows the cell to recognize this plasmid as a chromosome; regulation of chromosome number is extremely rigid. Only functional CEN sequences from S. cerevisiae have been isolated and used on plasmids. CEN sequences are only a couple of hundred base pairs in size. Apparently functional centromere sequences from other eukaryotes, including Sc. pombe and Pichia, are too large to be isolated and utilized on a plasmid.
The polyadenylation occurs at base 103.
The 2µ sequence in pYES2 has the replication origin only--not sequences that code for the proteins required for self replication. Therefore, vectors such as pYES2 will replicate to high copy number (30 per cell) and are very stable in circle-plus (have endogenous 2µ) strains but are maintained only at low copy number (2 per cell) and are very unstable in circle-zero strains, with no endogenous 2µ.
The following relative expression levels were observed in beta-galactosidase expression assays:
0.1 units when repressed in the presence of glucose.
Greater than 2000 units when induced in the absence of glucose and the presence of galactose.
The following are commonly employed auxotrophic markers:
1) his3Δ1: Histidine requiring strain (from gene disruption) with a deletion in locus 1. The his3 denotes the disruption of the HIS3 gene. The Δ1 is a deletion that has been engineered to decrease the recombination between the incoming plasmid DNA and the chromosomal site.
2) leu2: Leucine requiring strain due to the disruption of the LEU2 gene.
3) trp1-289: Tryptophan requiring strain, developed from gene disruption and a further point mutation to decrease the recombination between the incoming plasmid DNA and the chromosomal site.
4) ura3-52: Uracil requiring.
For more detail on types and methods of gene disruption in yeast refer to METHODS IN ENZYMOLOGY Vol. 194.
Some researchers choose to grow yeast in medium containing 2% galactose as the sole carbon source during induction. However, yeast typically grow more quickly in induction medium containing 2% galactose plus 2% raffinose. Raffinose is a good carbon source for yeast, and unlike glucose, does not repress transcription from the GAL promoter. Raffinose is a trisaccharide of galactose, glucose and fructose linked in that order. Most yeasts can cleave the glucose-fructose bond, but not the galactose-glucose bond. Fructose is then used as a carbon source.
Prokaryotic mRNAs contain a Shine-Dalgarno sequence, also known as a ribosome binding site (RBS), which is composed of the polypurine sequence AGGAGG located just 5’ of the AUG initiation codon. This sequence allows the message to bind efficiently to the ribosome due to its complementarity with the 3’-end of the 16S rRNA. Similarly, eukaryotic (and specifically mammalian) mRNA also contains sequence information important for efficient translation. However, this sequence, termed a Kozak sequence, is not a true ribosome binding site, but rather a translation initiation enhancer. The Kozak consensus sequence is ACCAUGG, where AUG is the initiation codon. A purine (A/G) in position -3 has a dominant effect; with a pyrimidine (C/T) in position -3, translation becomes more sensitive to changes in positions -1, -2, and +4. Expression levels can be reduced up to 95% when the -3 position is changed from a purine to pyrimidine. The +4 position has less influence on expression levels where approximately 50% reduction is seen. See the following references:
- Kozak, M. (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44, 283-292.
- Kozak, M. (1987) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. Mol. Biol. 196, 947-950.
- Kozak, M. (1987) An analysis of 5´-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125-8148.
- Kozak, M. (1989) The scanning model for translation: An update. J. Cell Biol. 108, 229-241.
- Kozak, M. (1990) Evaluation of the fidelity of initiation of translation in reticulocyte lysates from commercial sources. Nucleic Acids Res. 18, 2828.
Note: The optimal Kozak sequence for Drosophila differs slightly, and yeast do not follow this rule at all. See the following references:
- Romanos, M.A., Scorer, C.A., Clare, J.J. (1992) Foreign gene expression in yeast: a review. Yeast 8, 423-488.
- Cavaneer, D.R. (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res. 15, 1353-1361.
Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.
Our vectors have not been completely sequenced. Your sequence data may differ when compared to what is provided. Known mutations that do not affect the function of the vector are annotated in public databases.
No, our vectors are not routinely sequenced. Quality control and release criteria utilize other methods.
Sequences provided for our vectors have been compiled from information in sequence databases, published sequences, and other sources.