Sf-900™ II SFM
Invitrogen17万+抗体限时买二赠一,靶点广,灵活用!
Sf-900™ II SFM
Gibco™

Sf-900™ II SFM

Sf-900™ II SFM 是一种无血清、无蛋白的昆虫细胞培养基,其经过优化,可用于草地贪夜蛾(Sf9 和 Sf21)细胞的生长和维持,并可利用杆状病毒表达载体系统 (BEVS)了解更多信息
Have Questions?
更改视图buttonViewtableView
货号数量
10902096500 mL
109020881000 mL
109021046 x 1 L
货号 10902096
价格(CNY)
819.00
Each
添加至购物车
数量:
500 mL
Customize this product
价格(CNY)
819.00
Each
添加至购物车
Sf-900™ II SFM 是一种无血清、无蛋白的昆虫细胞培养基,其经过优化,可用于草地贪夜蛾(Sf9 和 Sf21)细胞的生长和维持,并可利用杆状病毒表达载体系统 (BEVS) 大规模生产重组蛋白。该培养基适用于悬浮和单层培养方法,并支持其他鳞翅目昆虫细胞系的生长。Sf-900™ II SFM 特点:

•优异的长期、高密度生长
• 经优化用于重组蛋白生产
• 无血清、无蛋白、即用型配方
• 可在生物反应器中扩展

优异的长期、高密度生长
草地贪夜蛾 (Sf9) 细胞在 Sf-900™ II SFM 中生长达到最大细胞密度 9 至 12 x 106 个细胞/mL,与竞争剂配方和 Grace 培养基(参见产品手册)相比显著改善。使用 Lymantria dispar(舞毒蛾)和 Trichoplusia ni(Tn-368;粉纹夜蛾)细胞系还观察到最大细胞密度增加 20–100%。Sf-900™ II SFM 能够支持培养物传代 >20 代。

经优化用于重组蛋白生产
传统上,使用补充有 10% FBS 的 Grace 培养基进行重组蛋白表达。Sf-900™ II SFM 是一种改善的无血清、无蛋白培养基,设计用于培养 Sf9 和其他鳞翅目昆虫细胞系以及生产昆虫病毒和 rDNA 蛋白。

无血清、无蛋白、即用型配方
Sf-900™ II SFM 是一种无血清、无蛋白培养基,可更容易地纯化您的目标蛋白。Sf-900™ II SFM 为即用型;不需要添加血清、谷氨酰胺或表面活性剂。适应其他市售无血清培养基的细胞可直接加入 Sf-900™ II SFM 传代培养,通常无需进一步适应。细胞通常需要适应一些含血清配方。

可在生物反应器中扩展
使用 5 L Celligen™ 生物反应器证明了 Sf-900™ II SFM 在大规模细胞培养系统中的实用性。成功感染 rAcNPV 产生 rβ-Gal 和 rEPO(参见产品手册)。

产品用途
在生产过程中使用 Gibco™ Sf-900 II SFM 并已向 FDA 提交申请的客户可以向我们索取授权使用书以便引用我们的 II 类 药物主文件 (DMF)

cGMP 生产和质量体系
为确保供应链的稳定,我们在位于纽约格兰德岛和英国苏格兰的两个独立工厂内生产 Sf-900 II SFM。两家工厂均符合 cGMP 生产要求,并通过 ISO 13485 认证,是在 FDA 注册的医疗器械生产商。
仅供科研使用。不可用于诊断程序。
规格
细胞系Sf21, Sf9
细胞类型昆虫细胞
产品线Gibco, Sf-900
产品类型昆虫细胞无血清培养基 (SFM)
数量500 mL
运输条件室温
种属草地贪夜蛾 (S. frugiperda, Spodoptera frugiperda)
分类无蛋白, 无血清
形式液体
血清水平无血清
加有添加剂谷氨酰胺
Unit SizeEach
内容与储存
储存条件:2°C 至 8°C。避光储存
运输条件:环境
有效期:自生产之日起 12 个月

常见问题解答 (FAQ)

昆虫细胞培养可使用哪些种类和浓度的杀菌剂?

许多抗生素都适用于昆虫细胞。下列为常用抗生素:

青霉素/链霉素:50–100 U/mL;50–100 μg/mL
两性霉素B(Fungizone 抗真菌剂):0.25 μg/mL
庆大霉素:500 mL培养基中加入0.5 mL 10 mg/mL溶液(最终浓度10 μg/mL)

在将血清加入我的培养基之前,是否需要对其进行热灭活操作?

热灭活操作不是必需的。我们的团队直接使用未经热灭活的血清,并未发现其对细胞生长或细胞形态有任何显著影响。

你们是否提供无血清的昆虫培养基?

是的,我们提供各类无血清的昆虫培养基,请点击此处(https://www.thermofisher.com/us/en/home/life-science/cell-culture/insect-cell-culture/insect-cell-culture-misc/serum-free-media.html?icid=cvc-insect-media-c2t2)浏览我们所提供的培养基以及它们之间的区别。

How do I adapt my cells to serum-free medium?

Cells can be adapted by Sequential or Direct Adaptation. Suggested protocols for each are below, and you can also find more information by searching "Adaptation of Cell Cultures to a Serum-Free Medium" from our website home page.

SEQUENTIAL ADAPTATION
1) Subculture the cells growing in serum-supplemented medium into a 25%:75% mixture of SFM and serum supplemented medium.
2) When the cell density is 5 x 10E5 cells/ml, subculture the cells into a 50%:50% mixture of SFM and serum supplemented medium at a cell density 2.5 x 10E5 to 3 x 10E5 cells/ml.
3) Continue to subculture after the cell density 5 x 10E5 cells/ml in gradually increasing proportions of SFM until the serum is ~0.1% with about 85% cell viability.
4) Subculture the cells into SFM with an innoculum of 2.5 x 10E5 to 3 x 10E5 cells/ml.
5) When the cell density is 1 x 10E6 to 3 x 10E6 cells/ml (4 to 6 days post planting) subculture the cells again.
6) Stock cultures of SFM adapted cells should be subcultured in SFM every 3 to 5 days when the cell density is 1 x 10E6 to 3 x 10E6 cells/ml with 90% viability.

DIRECT ADAPTATION
Some cells can be directly adapted from serum-containing medium to SFM. For direct adaptation, the cell innoculum should be 1.5 x 10E5 to 3 x 10E5 cells/ml.
Cells should be subcultured when the cell density is 1 x 10E6 to 3 x 10E6 cells/ml. Cells are fully adapted to SFM when the cell density is 2 x 10E6 to 4 x 10E6 cells/ml after 4 to 7 days in culture.
Stock cultures of cells adapted to SFM should be subcultured in SFM every 3 to 5 days when the cell density is 1 x 10E6 to 3 x 10E6 cells/ml with 90% viability.

Why is it necessary to gradually adapt the cells to serum-free medium?

Some cells, such as insect cells, are sensitive to changes in their medium. By sequentially adapting cells, the medium is changed with minimal effects on cell growth.

Find additional tips, troubleshooting help, and resources within our Cell Culture Support Center.

引用和文献 (16)

引用和文献
Abstract
Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase.
Authors: Vickers Chad; Hales Paul; Kaushik Virendar; Dick Larry; Gavin James; Tang Jin; Godbout Kevin; Parsons Thomas; Baronas Elizabeth; Hsieh Frank; Acton Susan; Patane Michael; Nichols Andrew; Tummino Peter;
Journal:J Biol Chem
PubMed ID:11815627
'Human angiotensin-converting enzyme-related carboxypeptidase (ACE2) is a zinc metalloprotease whose closest homolog is angiotensin I-converting enzyme. To begin to elucidate the physiological role of ACE2, ACE2 was purified, and its catalytic activity was characterized. ACE2 proteolytic activity has a pH optimum of 6.5 and is enhanced by monovalent anions, which ... More
hsp90 is required for heme binding and activation of apo-neuronal nitric-oxide synthase: geldanamycin-mediated oxidant generation is unrelated to any action of hsp90.
Authors: Billecke Scott S; Bender Andrew T; Kanelakis Kimon C; Murphy Patrick J M; Lowe Ezra R; Kamada Yasuhiko; Pratt William B; Osawa Yoichi;
Journal:J Biol Chem
PubMed ID:11923316
'It is established that neuronal NO synthase (nNOS) is associated with the chaperone hsp90, although the functional role for this interaction has not been defined. We have discovered that inhibition of hsp90 by radicicol or geldanamycin nearly prevents the heme-mediated activation and assembly of heme-deficient apo-nNOS in insect cells. This ... More
The major conformational IgE-binding epitopes of hevein (Hev b6.02) are identified by a novel chimera-based allergen epitope mapping strategy.
Authors: Karisola Piia; Alenius Harri; Mikkola Jari; Kalkkinen Nisse; Helin Jari; Pentikäinen Olli T; Repo Susanna; Reunala Timo; Turjanmaa Kristiina; Johnson Mark S; Palosuo Timo; Kulomaa Markku S;
Journal:J Biol Chem
PubMed ID:11909866
'A novel approach to localize and reconstruct conformational IgE-binding epitope regions of hevein (Hev b6.02), a major natural rubber latex allergen, is described. An antimicrobial protein (AMP) from the amaranth Amaranthus caudatus was used as an immunologically non-IgE-binding adaptor molecule to which terminal or central parts of hevein were fused. ... More
Enhancing yield of infectious Bursal disease virus structural proteins in baculovirus expression systems: focus on media, protease inhibitors, and dissolved oxygen.
Authors: Hu Y C; Bentley W E;
Journal:Biotechnol Prog
PubMed ID:10585191
'Structural proteins of the poultry pathogen, infectious bursal disease virus (IBDV), were expressed in the baculovirus/insect cell expression system. To date, several reports have indicated that animal virus structural proteins are expressed only at low yield in this system. In this article, several factors were examined to enhance yield. These ... More
Crystal Structure of Imaginal Disc Growth Factor-2. A MEMBER OF A NEW FAMILY OF GROWTH-PROMOTING GLYCOPROTEINS FROM DROSOPHILA MELANOGASTER.
Authors: Varela Paloma F; Llera Andrea S; Mariuzza Roy A; Tormo Jose;
Journal:J Biol Chem
PubMed ID:11821393
'Imaginal disc growth factor-2 (IDGF-2) is a member of a recently described family of Drosophila melanogaster-soluble polypeptide growth factors that promote cell proliferation in imaginal discs. Although their precise mode of action has not been established, IDGFs cooperate with insulin in stimulating the growth of imaginal disc cells. We report ... More