LanthaScreen™ Tb 发射滤光片,15 mm
Product Image

LanthaScreen™ Tb 发射滤光片,15 mm

一组两个发射滤光片(直径 = 15 mm),与 LanthaScreen™ Tb 检测和产品配合使用:10 nm了解更多信息
Have Questions?
货号适用于(设备)
PV00315微孔板读数仪
货号 PV00315
价格(CNY)
7,172.00
Each
添加至购物车
适用于(设备):
微孔板读数仪
价格(CNY)
7,172.00
Each
添加至购物车
一组两个发射滤光片(直径 = 15 mm),与 LanthaScreen™ Tb 检测和产品配合使用:10 nm 带通的 495 nm 滤光片和 25 nm 带宽的 520 nm 滤光片。

主要与 Perkin Elmer EnVision™ 读板仪配合使用。需要 Perkin Elmer EnVision™ 空滤光片支架以安装滤光片(Perkin Elmer 货号 2100-8110,10 个空条形码滤光片支架用于定制滤光片加密封圈)。

如需协助设置您的仪器,请拨打 +1 760 603 7200,x40266 联系我们的北美技术支持团队。
仅供科研使用。不可用于诊断程序。
规格
直径(公制)15 mm
激发/发射495/520 nm
标签类型镧系元素螯合物
产品线LanthaScreen
数量2 filters
运输条件室温
适用于(设备)微孔板读数仪
产品类型发射滤光片
Unit SizeEach
内容与储存
一组两个滤光片,在室温下运输和储存

常见问题解答 (FAQ)

How does the LanthaScreen technology compare to other TR-FRET assay formats?

We performed a comparison between the LanthaScreen assay and other commercially available TR-FRET assays from 2 different suppliers for the PKC kinase target. Our data revealed that the assays performed comparably, but that the LanthaScreen assay was simpler to optimize and contained fewer components that required optimization. The LanthaScreen assay is a two component system, whereas the other assay formats utilize a trimolecular mechanism which is more time consuming to optimize and has added costs.

For my kinase assay, can I pre-mix the Tb-Ab and EDTA so that I can stop the kinase assay and begin detection with a single reagent addition?

Yes, this is possible depending on the concentrations of reagents used and the time for which they are mixed. We recommend developing and optimizing the assay by using separate reagent additions, because this method will work under the widest range of conditions. Once the assay is optimized, the performance of the assay using pre-mixed antibody and EDTA can be evaluated. We have successfully developed robust assays in which the antibody and EDTA were pre-mixed and then stored overnight at 4 degrees C prior to use the following day. A loss of signal intensity was observed in this case, however, by using the ratiometric readout, this effect was minimal.

Are the LanthaScreen reagents stable to interference from Mg2+, Mn2+, and EDTA?

The chelate is completely stable to Mg2+. The amount of Mn2+ or EDTA that the chelate can tolerate depends largely on how long they are mixed together and the combination of additives used in the reaction. If a reaction requires either Mg2+ or Mn2+ for activation, it is best to stop the reaction by adding an equimolar amount (or slight excess) of EDTA to chelate the metal ions present. This will then essentially eliminate any interference on the terbium chelate by EDTA or Mn2+. Regardless, when LanthaScreen assays are performed using a ratiometric readout (division of the acceptor signal by the donor signal), any interference caused by Mn2+ or EDTA is largely cancelled out.

What is the optimal and/or maximum distance for a Tb-fluorescein pair?

The Förster radius, the distance at which energy transfer efficiency is half-maximal, is around 50-angstroms for the terbiumÆ fluorescein pair. However, the Förster radius does not give a complete indication of energy transfer efficiency when using long lifetime fluorophores such as terbium chelates. When using terbium chelates, energy transfer efficiency is determined by the distance of closest approach between the donor and acceptor during the excited state lifetime of the donor. In many assay systems, such as those designed using antibodies or peptides, there is a large degree of conformational freedom that allows the donor and acceptor to approach one another, effectively enhancing the FRET signal. Additionally, it is important to note that as the donor/acceptor pair approach one another and the efficiency of energy transfer increases, the fluorescent lifetime decreases to a comparable extent. From a practical standpoint, this means that when energy transfer is extremely efficient, FRET cannot be measured in time-resolved mode (because the energy transfer is complete before the measurement is made). This is another reason why TR-FRET assays based around terbium-labeled antibodies or streptavidin perform so well, because there exist a range of donor/acceptor distances, several of which are optimal for measuring FRET.

How many LanthaScreen assays can I run with a given amount of substrate?

It varies, depending on the concentration of substrate used in the assay. But in general, for the peptide substrates, 1 mg of peptide will run approximately 250,000 wells (10 µL reaction, 200 nM peptide). For Poly GT or GAT, the 1 mL of 30 µM size we sell is approximately 1 mg. With these substrates, 1 mL of 30 µM will run approximately 16,700 wells (10 µL reaction, 200 µM substrate).

20 nmol of our physiological protein substrates is sufficient for approximately 10,000 wells (10 µL reaction, 200 µM substrate).