Cholera Toxin Subunit B (Recombinant), Alexa Fluor™ 647 Conjugate
Invitrogen17万+抗体限时买二赠一,靶点广,灵活用!
Cholera Toxin Subunit B (Recombinant), Alexa Fluor™ 647 Conjugate
Invitrogen™

Cholera Toxin Subunit B (Recombinant), Alexa Fluor™ 647 Conjugate

Molecular Probes™ cholera toxin conjugates are made from a recombinant version of the B subunit only. This allows us toRead more
Have Questions?
Catalog NumberQuantity
C34778100 μg
Catalog number C34778
Price (CNY)
3,168.00
Online Exclusive
Ends: 31-Dec-2025
4,293.00
Save 1,125.00 (26%)
Each
Add to cart
Quantity:
100 μg
Price (CNY)
3,168.00
Online Exclusive
Ends: 31-Dec-2025
4,293.00
Save 1,125.00 (26%)
Each
Add to cart
Molecular Probes™ cholera toxin conjugates are made from a recombinant version of the B subunit only. This allows us to provide a very high-purity product that is completely free of the toxic A subunit. Cholera toxin B subunit (CT-B) attaches to cells by binding to ganglioside GM1, making it a powerful tool for retrograde labeling of neurons. This tracer has been used in a variety of applications, including tracing of rat forebrain afferents, projections of the parabrachial region, and neurons of the urinary bladder wall. When used in neuronal tracing applications, CT-B is typically introduced by pressure injection or by iontophoretic injection into neural tissue.

Cholera Toxin Subunit B Specifications:
• Label (Ex/Em): Alexa Fluor™ 647 (650/668 nm)
• At neutral pH, the 11.4 kDa B subunit exists as a 57 kDa pentamer
• Lyophilized product can be dissolved in buffer (e.g., PBS) for use


Cholera Toxin Subunit B for Studying Lipid Rafts
More recently, researchers have found that CT-B can be used as a marker for lipid rafts, which are membrane microdomains enriched in cholesterol and sphingolipids thought to be important in cell signaling. For lipid raft staining, cells are first incubated with fluorescent CT-B. Then, an anti–CT-B antibody is added to crosslink the CT-B in the lipid rafts into distinct patches on the plasma membrane. These patches are easily visualized by fluorescence microscopy. In addition to individual fluorescent CT-B conjugates, we also offer Vybrant™ Lipid Raft Labeling Kits that contain the Alexa Fluor™ 488, Alexa Fluor™ 555, or Alexa Fluor™ 594 dye conjugates of CT-B, an anti–CT-B antibody, and a detailed protocol for labeling and preparing cells for fluorescence microscopy.

Find More CT-B Conjugates
We offer various CT-B conjugates. Review Protein Conjugates—Section 14.7 in the Molecular Probes™ Handbook for more information on these tracers.

For Research Use Only. Not for human or animal therapeutic or diagnostic use.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Label TypeAlexa Fluor Dyes
Product LineAlexa Fluor
Protein FormRecombinant
Protein SubtypeCholera Toxin
Quantity100 μg
Shipping ConditionRoom Temperature
ConjugateAlexa Fluor 647
FormLyophilized
RecombinantRecombinant
Unit SizeEach
Contents & Storage
Store in freezer (-5 to -30°C) and protect from light.

Frequently asked questions (FAQs)

I injected a fluorescent tracer, but cannot detect it after tissue is fixed and sectioned. What am I doing wrong?

Confirm that the tracer you are using crosslinks to proteins or has a primary amine for fixation-either a hydrazide, lysine fixable dextran, or a protein conjugate.
Use aldehyde-based fixatives to cross link the amines on the tracer.
Inject a larger amount or higher concentration of the tracer. Tracers are generally injected at 1-20% concentrations (10 mg/mL or higher).
Confirm that you are using the correct fluorescent filter for detection. You can perform a spot test by pipetting a small amount of the undiluted stock solution of the tracer onto a slide, then view under the filter you are using on your microscope. This will confirm if the tracer fluorescence can be detected and the fluorescent microscope filter is working properly.
Review tissue fixation and handling procedures to confirm if any reagents or processing procedures could be affecting the tracer.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Do you have a tracer that will only transport retrograde?

Wheat germ agglutinin and cholera toxin conjugates have been used for retrograde tracing. They may have some anterograde tracing in some applications. A selection guide can be found here (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-tracing-tracking-and-morphology/neuronal-tracing/protein-conjugates.html).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

How do I know which tracer to choose for my experiment?

Factors to consider are size of tracer, method of delivery (injection, direct application to tissue, etc.), and if the tracer needs to be fixable. Here are some links to details about the various classes of neuronal tracers we offer and how to choose between them:

Neuronal Tracing (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-tracing-tracking-and-morphology/neuronal-tracing.html)
Choosing a Tracer (https://www.thermofisher.com/us/en/home/references/molecular-probes-the-handbook/fluorescent-tracers-of-cell-morphology-and-fluid-flow/choosing-a-tracer.html)
Imaging Analysis (http://assets.thermofisher.com/TFS-Assets/BID/Reference-Materials/bioprobes-50-journal.pdf)

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What products do you have for neuronal tracing?

Please check out this web page (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-tracing-tracking-and-morphology/neuronal-tracing.html) for details.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (27)

Citations & References
Abstract
Inhibition of caveolar uptake, SV40 infection, and beta1-integrin signaling by a nonnatural glycosphingolipid stereoisomer.
Authors:Singh RD, Holicky EL, Cheng ZJ, Kim SY, Wheatley CL, Marks DL, Bittman R, Pagano RE
Journal:J Cell Biol
PubMed ID:17371832
'Caveolar endocytosis is an important mechanism for the uptake of certain pathogens and toxins and also plays a role in the internalization of some plasma membrane (PM) lipids and proteins. However, the regulation of caveolar endocytosis is not well understood. We previously demonstrated that caveolar endocytosis and beta1-integrin signaling are ... More
Actin depolymerization transduces the strength of B-cell receptor stimulation.
Authors:Hao S, August A
Journal:Mol Biol Cell
PubMed ID:15728723
'Polymerization of the actin cytoskeleton has been found to be essential for B-cell activation. We show here, however, that stimulation of BCR induces a rapid global actin depolymerization in a BCR signal strength-dependent manner, followed by polarized actin repolymerization. Depolymerization of actin enhances and blocking actin depolymerization inhibits BCR signaling, ... More
Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization.
Authors:Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E,
Journal:Nat Immunol
PubMed ID:18604214
'Inhalation of silica crystals causes inflammation in the alveolar space. Prolonged exposure to silica can lead to the development of silicosis, an irreversible, fibrotic pulmonary disease. The mechanisms by which silica and other crystals activate immune cells are not well understood. Here we demonstrate that silica and aluminum salt crystals ... More
Bacterial RNA:DNA hybrids are activators of the NLRP3 inflammasome.
Authors:Kailasan Vanaja S, Rathinam VA, Atianand MK, Kalantari P, Skehan B, Fitzgerald KA, Leong JM,
Journal:
PubMed ID:24828532
'Enterohemorrhagic Escherichia coli (EHEC) is an extracellular pathogen that causes hemorrhagic colitis and hemolytic uremic syndrome. The proinflammatory cytokine, interleukin-1ß, has been linked to hemolytic uremic syndrome. Here we identify the nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) inflammasome as an essential mediator of ... More
Tracing from fat tissue, liver, and pancreas: a neuroanatomical framework for the role of the brain in type 2 diabetes.
Authors:Kreier F, Kap YS, Mettenleiter TC, van Heijningen C, van der Vliet J, Kalsbeek A, Sauerwein HP, Fliers E, Romijn JA, Buijs RM
Journal:Endocrinology
PubMed ID:16339209
'The hypothalamus uses hormones and the autonomic nervous system to balance energy fluxes in the body. Here we show that the autonomic nervous system has a distinct organization in different body compartments. The same neurons control intraabdominal organs (intraabdominal fat, liver, and pancreas), whereas sc adipose tissue located outside the ... More