Search
Search
View additional product information for DiOC2(3) (3,3'-Diethyloxacarbocyanine Iodide) - FAQs (D14730)
7 product FAQs found
If you use our FluoVolt Membrane Potential Kit (Cat. No. F10488), the kit provides a background suppressor to reduce this problem. For other indicators, consider the use of BackDrop Background Suppressor (Cat no. R37603, B10511, and B10512).
Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.
Since these dyes insert into lipid membranes, any disruption of the membranes leads to loss of the dye. This includes permeabilization with detergents like Triton X-100 or organic solvents like methanol. Permeabilization is necessary for intracellular antibody labeling, leading to loss of the dye. Instead, a reactive dye such as CFDA SE should be used to allow for covalent attachment to cellular components, thus providing for better retention upon fixation and permeabilization.
Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.
Molecules that change their structure in response to the surrounding electric field can function as fast-response probes for the detection of transient (millisecond) potential changes. Slow-response dyes function by entering depolarized cells and binding to proteins or membranes. Increased depolarization results in additional dye influx and an increase in fluorescence, while hyperpolarization is indicated by a decrease in fluorescence. Fast-response probes are commonly used to image electrical activity from intact heart tissues or measure membrane potential changes in response to pharmacological stimuli. Slow-responding probes are often used to explore mitochondrial function and cell viability.
Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.
A membrane potential indicator selection guide can be found here (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-viability-and-regulation/ion-indicators/membrane-potential-indicators.html).
Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.
The transport is fairly slow, around 6 mm/day in live tissue and slower in fixed tissue, so diffusion of lipophilic carbocyanine tracers from the point of their application to the terminus of a neuron can take several days to weeks The FAST DiO and DiI analogs (which have unsaturated alkyl tails) can improve transport rate by around 50%.
Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.
Select the dye that is compatible with your available excitation source(s) and emission filter set/channels. The solid, paste and crystal forms can be applied directly to neurons in tissues. For labeling cells in culture or microinjection, the lipophilic dyes in solution or solid form can be used.
Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.
Lipophilic cyanine dyes are preferred for this sort of assay, since they insert into cellular membranes and then, upon fusion, are shared by the fused cells as the membranes are shared. For example, one cell population can be labeled with DiI (orange-red) and another cell population can be labeled with DiO (green), and when the cells fuse, the combined color appears yellow (when imaged with a dual-bandpass filter set).
Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.