Tetramethylrhodamine, Methyl Ester, Perchlorate (TMRM) - FAQs

View additional product information for Tetramethylrhodamine, Methyl Ester, Perchlorate (TMRM) - FAQs (T668)

8 product FAQs found

当我使用膜电位指示剂时,看到神经元周围出现了较高的背景,如何降低背景干扰?

如果使用我们的FluoVolt 膜电势试剂盒(货号F10488),该试剂盒包含一种背景抑制剂,可改善这一问题。对于其他指标剂,可以考虑使用BackDrop 背景抑制剂(货号R37603、B10511和B10512)。

快反应膜电位探针和慢反应膜电位探针有什么区别?

在周围电场的作用下结构变化的分子可用作检测瞬时(毫秒级)电位变化的快反应探针。慢反应染料则会进入去极化细胞,结合蛋白或膜。增强去极化会造成额外的染料流入,增强荧光强度;过极化的特征则是荧光强度下降。快反应探针通常用于完整心脏组织的电位活动成像,或测量药理刺激引起的膜电位变化。慢反应探针常用于探索线粒体功能和细胞活力。

你们提供哪些类型的膜电位指示剂?我该如何根据自己的试验选择?

膜电位指示剂选择指南请见此处(https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-viability-and-regulation/ion-indicators/membrane-potential-indicators.html)。

当我测试线粒体膜电位时,未处理的细胞也会发出荧光,而且我在试验样品中没有看到显著差异。

无论您使用哪种染料,四甲基罗丹明甲酯(TMRM)还是MitoTracker Red FM,未处理的细胞都会发出荧光。只要细胞线粒体膜电位降低就会导致荧光信号降低。最重要的是变化的程度。JC-1染料不仅强度改变,还有激发和发射比例光谱的改变。设置未处理的对照和用线粒体膜电位去稳定剂(如CCCP或FCCP)处理的阳性对照是非常重要的。这些染料仅用于活细胞,在固定处理的细胞中无法保留相同程度的信号。

I am seeing high background outside of my neuronal cells when using membrane potential indicators. What can I do to reduce background?

If you use our FluoVolt Membrane Potential Kit (Cat. No. F10488), the kit provides a background suppressor to reduce this problem. For other indicators, consider the use of BackDrop Background Suppressor (Cat no. R37603, B10511, and B10512).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What is the difference between fast and slow-response membrane potential probes?

Molecules that change their structure in response to the surrounding electric field can function as fast-response probes for the detection of transient (millisecond) potential changes. Slow-response dyes function by entering depolarized cells and binding to proteins or membranes. Increased depolarization results in additional dye influx and an increase in fluorescence, while hyperpolarization is indicated by a decrease in fluorescence. Fast-response probes are commonly used to image electrical activity from intact heart tissues or measure membrane potential changes in response to pharmacological stimuli. Slow-responding probes are often used to explore mitochondrial function and cell viability.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What type of membrane potential indicators do you offer and how should I choose one for my experiment?

A membrane potential indicator selection guide can be found here (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-viability-and-regulation/ion-indicators/membrane-potential-indicators.html).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I am testing mitochondrial membrane potential, but my untreated cells are fluorescing, and I'm not seeing a significant difference in my test sample.

Regardless of which dye you use - tetramethylrhodamine, methyl ester (TMRM), JC-1 or MitoTracker - untreated cells will fluoresce. It's just that cells with reduced mitochondrial membrane potential will fluoresce less. It is the degree of change which is important. JC-1 dye not only changes intensity, but has a ratiometric spectral change in excitation and emission. It is very important to have an untreated control as well as a positive control treated with a mitochondrial membrane potential destabilizer, such as CCCP or FCCP. Most mitochondrial stains are only for use with live cells, as the signal will not be retained to the same degree with fixation.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.