c7c8 - 主要特点/性能数据/相关资源/应用/技术/文档/联系人

For scientists to advance their understanding of complex samples and develop innovative materials, they must have access to robust, precise instrumentation capable of correlating form and function, as well as resolving space, time and frequency.

Thermo Fisher Scientific introduces the Thermo Scientific Spectra 200 (S)TEM, the high-throughput, aberration-corrected, (scanning) transmission electron microscope for all materials science applications.

Built on an ultra-stable foundation

All Spectra 200 (S)TEM's are delivered on new platforms designed to offer an unprecedented level of mechanical stability and highest imaging quality though passive and (optional) active vibration isolation.

The system is housed in a fully re-designed enclosure with a built-in on-screen display for convenient specimen loading and removal. For the first time, full modularity and upgradeability can be offered between uncorrected and single-corrected configurations with variable heights, allowing maximum flexibility for different room configurations.

Key Features

The Spectra 200 (S)TEM can be powered by a new-cold field emission gun (X-CFEG). The X-CFEG has extremely high brightness (>>1.0 x 108 A/m2/Sr/V*), low energy spread, and can be operated from 30 – 200 kV. This provides high-resolution STEM imaging with high probe currents for high-throughput, fast acquisition STEM analytics. With the powerful combination of X-CFEG and S-CORR probe aberration corrector, sub-Angstrom STEM imaging with over 1000 pA of probe current can be routinely achieved.

High-angle annular dark-field (HAADF) images of silicon.
Si[110] HAADF images taken on a Spectra 200 S/TEM with probe currents ranging from 0.016 nA up to 1 nA while maintaining <76 pm STEM resolution.

Further, probe currents can be flexibly tuned from <1 pA up to the nA range with fine control of the gun and condenser optics, all with minimum impact on the probe aberrations, so that the widest range of specimens and experiments can be accommodated (see the MOF example in the Panther STEM detection section).

As with all cold field emission sources, the sharp tip requires a periodic regeneration (called flashing) to maintain the probe current. With the X-CFEG, the tip only requires flashing once per working day, a process that takes less than a minute. There is no measurable impact on the probe aberrations even in the highest resolution imaging conditions and the daily tip flashing process has no impact on the tip lifetime.

Tip flashing on the X-CFEG: 60 pm resolution at 200 kV is maintained before and after a tip flashing without adjustment of the optics. The process takes less than one minute and is required only once per working day and has no impact on the lifetime of the tip.

This new generation X-CFEG also produces enough total beam current (>14 nA) to support standard TEM imaging experiments (e.g. in situ) with large parallel probes, making it a uniquely all-purpose, yet high-performance, C-FEG.

The combination of enhanced mechanical stability, the latest 5th order S-CORR probe aberration correction and the X-CFEG, gives the Spectra 200 (S)TEM high-resolution, high-contrast STEM imaging capability for all accelerating voltages. Additionally, Spectra 200 (S)TEM retains the wide gap S-TWIN objective lens as standard from the Themis product line, to ensure customers have a pole gap with “room to do more” without compromising on spatial resolution. In the images below, 48 pm resolution is shown on a wide gap S-TWIN Spectra 200 (S)TEM at 200 kV.

Adding to ease of use, the Spectra 200 (S)TEM includes smart software algorithms to quickly, reproducibly and reliably correct up to 4th order aberrations in the STEM probe (Auto S-CORR) and optimize 1st and 2nd order aberrations on any specimen (OptiSTEM+). Auto S-CORR can therefore be used on a weekly basis to maintain high-order aberrations and OptiSTEM+ can be used daily to optimize image quality without the need of a standard specimen or manual tuning.

High-angle annular dark-field (HAADF) images of GaN and silicon.

Si [110] and GaN [212] taken on a Spectra 200 (S)TEM showing the specified resolution on a wide gap analytical S-TWIN pole piece (green circle) and achievable resolution (red circles). At 60 kV, 96 pm resolution is specified and at 200 kV, 60 pm is specified with an achievable resolution <48 pm.

The Spectra 200 (S)TEM offers STEM resolution specifications of 60 pm at 200 kV, 96 pm at 60 kV and 125 pm at 30 kV. For a full list of specifications, please refer to the  Spectra 200 (S)TEM datasheet.

STEM imaging on the Spectra 200 (S)TEM has been re-imagined with the Panther STEM detection system, which includes a new data acquisition architecture and two new, solid state, eight-segment ring and disk STEM detectors (16 segments in total). The new detector geometry offers access to advanced STEM imaging capability combined with the sensitivity to measure single electrons.

Schematic representation of STEM detectors.
The 16 segmented ring and disk detectors of the Panther STEM detection system allow for a range of STEM signals without the need for multiple detectors.

The entire signal is optimized and tuned to provide unprecedented signal-to-noise imaging capability with extremely low doses to facilitate imaging of beam sensitive materials. Additionally, the completely redeveloped data acquisition infrastructure can combine different individual detector segments, with the future possibility of combining detector segments in arbitrary ways, generating new STEM imaging methods and revealing information that is not present in conventional STEM techniques. The architecture is also scalable and provides an interface to synchronize multiple STEM and spectroscopic signals.

High-angle annular dark-field (HAADF) images of SrTiO3.
Comparison SrTiO₃ [001] HAADF images taken with the Panther STEM detection system with 3 pA, 1.3 pA and <1 pA of probe current. Even with probe currents <1 pA, the signal-to-noise ratio in the image allows automation routines like OptiSTEM+ to correct 1st and 2nd order aberrations in the probe forming optics, delivering sharp images.
Scanning transmission electron microscopy image of a metal organic framework.
Metal Organic Framework (MOF) MIL-101 imaged with 0.5 pA of beam current in STEM with iDPC at 200kV. The image is a single shot with a frame time of 23.5 seconds and the complex structure can be seen with 2 Å resolution. (Specimen courtesy of Professor Y. Han, King Abdullah University of Science and Technology.)

The Spectra 200 (S)TEM can be configured with an electron microscope pixel array detector (EMPAD) or a Thermo Scientific Ceta Camera with speed enhancement to collect 4D STEM data sets.

The EMPAD is capable of 30-300 kV and provides a high dynamic range (1:1,000,000 e- between pixels), high signal-to-noise ratio (1/140 e-), and high speed (1100 frames per second) on a 128 x 128 pixel array, which makes it the optimal detector for 4D STEM applications. (E.g. Applications where the details of the central and diffracted beams need to be analyzed simultaneously, as in the ptychography image below.)

More details can be found in the  EMPAD datasheet.

Electron microscope pixel array detector (EMPAD) image of MoS2.

The EMPAD detector can be used for a wide variety of applications. On the left, it is used to extend spatial resolution (0.39 Å) beyond the aperture limited resolution at low accelerating voltages (80 kV) in a bi-layer of the 2D material MoS2 ( Jiang, Y. et al. Nature 559, 343–349, 2018) . On the right, it is used to independently image dark field reflections, revealing the complex microstructure of the precipitates in a superalloy (Sample courtesy Professor G. Burke, University of Manchester).

The Ceta Camera with speed enhancement offers an alternative for 4D STEM applications where a greater number of pixels is required and when EDX analysis needs to be combined with each point in the STEM scan. This solution provides higher resolution diffraction patterns (up to 512 x 512 pixel resolution), suited for applications such as strain measurement.

The Spectra 200 (S)TEM has been configured to be a STEM analytics powerhouse. The extreme brightness and low energy spread of the X-CFEG, the latest generation, 5th order S-CORR probe corrector, the wide gap (S-TWIN or X-TWIN) pole piece with a portfolio of large solid angle and symmetric EDS detectors and the built-in EDX quantification engine in Thermo Scientific Velox Software makes STEM EDX on Spectra 200 (S)TEM fast, easy and quantifiable.

The Thermo Scientific EDX detector portfolio provides a choice of detector geometries to suit your experimental requirements and optimize EDX results. Both configurations have a symmetric design (see below), producing quantifiable data. Note that holder shadowing as a function of tilt is compensated in both detector configurations via built-in Velox Software functionality.

The Spectra 200 (S)TEM can be configured with either Super-X (for spectrum cleanliness and quantification) or Dual-X (for the largest solid angle and high-throughput STEM EDX mapping).

The Super-X detector system provides a highly collimated solid angle of 0.7 Sr and a Fiori number greater than 4000. It is designed for STEM EDX experiments where spectral cleanliness and quantification are critical.

The Dual-X detector system provides a solid angle of 1.76 Sr and a Fiori number greater than 2000. It is designed for high-throughput STEM EDX experiments such as EDS tomography or where signal yield is low and fast mapping is critical.

In the example below, the DyScO3 perovskite system is examined with the Dual-X detectors. The ultra-high brightness (>>1.0 x 108 A/m2/Sr/V*) of the X-CFEG and the resolving power of the S-CORR probe corrector are used to deliver a probe to the specimen with 150 pA of current and size <80 pm. With these high-brightness probe conditions, EDX mapping can be done rapidly with high sampling and high SNR, resulting in, for the first time, sub-Å spatial information in a single elemental, raw, and unfiltered EDX map. A fast Fourier transform of the Sc map shows up to 90 pm resolution.

DyScO3 image obtained using the Dual-X detectors on a scanning transmission electron microscope.

DyScO3 specimen investigated with the powerful combination of ultra-high brightness X-CFEG, S-CORR and the large solid angle (1.76 Sr) of the Dual-X detectors, resulting in high signal-to-noise ratio, atomic resolution (up to 90 pm), unfiltered EDX maps (Sample courtesy Professor L.F. Kourkoutis, Cornell University). 

Electron energy loss spectroscopy on Spectra 200 (S)TEM has also been accelerated by the ultra-high brightness (>>1.0 x 108 A/m2/Sr/V*) and intrinsically high energy resolution (<0.4 eV) of the X-CFEG which are delivered simultaneously in the STEM probe.

In the figure below, a probe with narrow energy spread (0.36 eV) and high current (480 pA) high spatial resolution (65 pm) provides ideal conditions to collect the Dy, Sc and O core loss edges with high energy resolution, signal to noise ratio and spatial resolution in the STEM image.

DyScO3 image obtained using the Dual-X detectors on a scanning transmission electron microscope.

DyScO3 specimen investigated with a Spectra 200 (S)TEM. The combined ultra-high brightness of the X-CFEG, intrinsically low energy spread of the source (<0.40 eV) and resolving power of the S-CORR results in high signal-to-noise ratio, Sc, O and Dy core loss edges with a sub-70 pm STEM probe (Sample courtesy Professor L.F. Kourkoutis, Cornell University).


Specifications

产品表格规范样式表
Spectra 200 (S)TEM
  • Probe corrector:
    • Energy spread: 0.4 eV
    • Information limit: 110 pm
    • STEM resolution: 60 pm (136 pm @ 30 kV)
  • Uncorrected:
    • Energy spread: 0.4 eV
    • Information limit: 110 pm
    • STEM resolution: 164 pm
Source
  • X-CFEG: Ultra-high-brightness cold field emission gun with energy resolution of <0.4 eV
  • Flexible high-tension range from 30 – 200 kV
Analytics and detectors
  • Super-X/Dual-X EDS options, integrated software, and the Gatan Ultrafast EELS/DualEELS options together provide up to 1000 sp/s of simultaneous EDS and EELS data acquisition
  • Analytics for live peak identification and background fitting during ultra-fast EDS acquisition
  • Symmetric EDS detector design allows for combined tomographic EDS
Available detector options
  • HAADF detector
  • On-axis solid state, 8 segmented BF and ADF detectors (16 segments in total)
  • Thermo Scientific Ceta 16M Camera (optionally with speed enhancement)
  • Gatan OneView/OneView IS cameras
  • Gatan energy filter series
  • Electron microscope pixel array detector (EMPAD)
Style Sheet for Komodo Tabs

Resources

Electron microscope pixel array detector (EMPAD) image of MoS₂.
The EMPAD detector can be used for a wide variety of applications. On the left, it is used to extend spatial resolution (0.39 Å) beyond the aperture limited resolution at low accelerating voltages (80 kV) in a bi-layer of the 2D material MoS₂ (Jiang, Y. et al. Nature 559, 343–349, 2018). On the right, it is used to independently image dark field reflections, revealing the complex microstructure of the precipitates in a superalloy (Sample courtesy Professor G. Burke, University of Manchester).

Tip flashing on the X-CFEG: 60 pm resolution at 200 kV is maintained before and after a tip flashing without adjustment of the optics. The process takes < 1 min, and is required only once per working day and has no impact on the lifetime of the tip.

The Spectra 200 (S)TEM can be configured with Dual-X for the largest solid angle and high-throughput STEM EDX mapping.

The Spectra 200 (S)TEM can be configured with Super-X for spectrum cleanliness and quantification.

Introducing the Spectra 200 (S)TEM

Introducing the Spectra 200 (S)TEM

Thermo Fisher Scientific introduces the Spectra 200 (S)TEM – the high-throughput, aberration-corrected, scanning transmission electron microscope for all materials science applications.

Register below to watch our recorded webinar and learn more about how the Spectra 200 (S)TEM delivers the highest-quality data for all applications. With an ultra-high-brightness X-CFEG source and a wide-gap pole piece with “room to do more,” it is the ultimate atomic-resolution materials-characterization tool.

Register now

Electron microscope pixel array detector (EMPAD) image of MoS₂.
The EMPAD detector can be used for a wide variety of applications. On the left, it is used to extend spatial resolution (0.39 Å) beyond the aperture limited resolution at low accelerating voltages (80 kV) in a bi-layer of the 2D material MoS₂ (Jiang, Y. et al. Nature 559, 343–349, 2018). On the right, it is used to independently image dark field reflections, revealing the complex microstructure of the precipitates in a superalloy (Sample courtesy Professor G. Burke, University of Manchester).

Tip flashing on the X-CFEG: 60 pm resolution at 200 kV is maintained before and after a tip flashing without adjustment of the optics. The process takes < 1 min, and is required only once per working day and has no impact on the lifetime of the tip.

The Spectra 200 (S)TEM can be configured with Dual-X for the largest solid angle and high-throughput STEM EDX mapping.

The Spectra 200 (S)TEM can be configured with Super-X for spectrum cleanliness and quantification.

Introducing the Spectra 200 (S)TEM

Introducing the Spectra 200 (S)TEM

Thermo Fisher Scientific introduces the Spectra 200 (S)TEM – the high-throughput, aberration-corrected, scanning transmission electron microscope for all materials science applications.

Register below to watch our recorded webinar and learn more about how the Spectra 200 (S)TEM delivers the highest-quality data for all applications. With an ultra-high-brightness X-CFEG source and a wide-gap pole piece with “room to do more,” it is the ultimate atomic-resolution materials-characterization tool.

Register now

Applications

采用电子显微镜进行过程控制

采用电镜进行过程控制

现代工业需求高通量、质量卓越、通过稳健的工艺控制维持平衡。SEM扫描电镜TEM透射电镜工具结合专用的自动化软件,为过程监控和改进提供了快速、多尺度的信息。

使用电子显微镜进行质量控制和故障分析

质量控制和故障分析

质量控制和保证对于现代工业至关重要。我们提供一系列用于缺陷多尺度和多模式分析的 EM电子显微镜和光谱工具,使您可以为过程控制和改进做出可靠、明智的决策。

使用电镜进行基础材料研究

基础材料研究

越来越小的规模研究新型材料,以最大限度地控制其物理和化学特性。电子显微镜为研究人员提供了对微米到纳米级各种材料特性的重要见解。

电源半导体设备分析

电源半导体设备分析

电源设备让定位故障面临独特的挑战,主要是由于电源设备结构和布局。我们的电源设备分析工具和工作流程可在工作条件下快速实现故障定位并提供精确、高通量的分析,以便表征材料、接口和设备结构。

显示设备故障分析

显示设备故障分析

不断发展的显示技术旨在提高显示质量和光转换效率,以支持不同行业领域的应用,同时继续降低生产成本。我们的过程计量、故障分析和研发解决方案帮助显示公司解决这些挑战。


Techniques

能量色散谱EDS

能量色散谱(EDS)可采集详细的元素信息以及电子显微镜图像,为电镜观察提供关键的组成背景。利用EDS可通过快速、整体的表面扫描至各个原子以确定化学成分。

了解更多 ›

3D EDS断层扫描

现代材料研究越来越依赖于三维的纳米级分析。3D电镜和能量色散X射线光谱可以3D表征包括整个化学和结构背景下的组分数据。

了解更多 ›

使用EDS进行原子级元素映射

原子分辨率EDS通过区分单个原子的元素特性,为材料分析提供无与伦比的化学环境。当与高分辨率透射电镜TEM结合时,可以观察样品中原子的精确组织。

了解更多 ›

EDS元素分析

EDS为电子显微镜观察提供重要的组分信息。尤其是我们独特的Super-X和Dual-X检测器系统添加了提高通量和/或灵敏度的选项,使您可以优化数据采集以满足您的研究优先级。

了解更多 ›

电子能量损失谱

材料科学研究借助高分辨率EELS得以进行广泛的分析应用。这包括高通量、高信噪比元素映射,以及氧化状态和表面声子的探测。

了解更多 ›

原位实验

需要通过电子显微镜直接实时观察微观结构变化,以便了解在加热、冷却和润湿过程中的动态过程(如再结晶、晶粒生长和相变)的基本原理。

了解更多 ›

颗粒分析

颗粒分析在纳米材料研究和质量控制中发挥着重要作用。纳米级分辨率和卓越的电子显微镜成像可以与专用软件相结合,以快速表征粉末和微粒。

了解更多 ›

多尺度分析

必须在更高分辨率下分析新材料,同时保留较大的样品背景。多尺度分析允许多种成像工具和模态(如X射线microCT、DualBeam、激光PFIB、SEM和TEM)关联。

了解更多 ›

自动化颗粒工作流程

自动化纳米颗粒工作流程(APW)是一种用于纳米颗粒分析的透射电子显微镜工作流程,提供纳米级大面积、高分辨率的纳米级成像和数据采集,并进行即时处理。

了解更多 ›

能量色散谱EDS

能量色散谱(EDS)可采集详细的元素信息以及电子显微镜图像,为电镜观察提供关键的组成背景。利用EDS可通过快速、整体的表面扫描至各个原子以确定化学成分。

了解更多 ›

3D EDS断层扫描

现代材料研究越来越依赖于三维的纳米级分析。3D电镜和能量色散X射线光谱可以3D表征包括整个化学和结构背景下的组分数据。

了解更多 ›

使用EDS进行原子级元素映射

原子分辨率EDS通过区分单个原子的元素特性,为材料分析提供无与伦比的化学环境。当与高分辨率透射电镜TEM结合时,可以观察样品中原子的精确组织。

了解更多 ›

EDS元素分析

EDS为电子显微镜观察提供重要的组分信息。尤其是我们独特的Super-X和Dual-X检测器系统添加了提高通量和/或灵敏度的选项,使您可以优化数据采集以满足您的研究优先级。

了解更多 ›

电子能量损失谱

材料科学研究借助高分辨率EELS得以进行广泛的分析应用。这包括高通量、高信噪比元素映射,以及氧化状态和表面声子的探测。

了解更多 ›

原位实验

需要通过电子显微镜直接实时观察微观结构变化,以便了解在加热、冷却和润湿过程中的动态过程(如再结晶、晶粒生长和相变)的基本原理。

了解更多 ›

颗粒分析

颗粒分析在纳米材料研究和质量控制中发挥着重要作用。纳米级分辨率和卓越的电子显微镜成像可以与专用软件相结合,以快速表征粉末和微粒。

了解更多 ›

多尺度分析

必须在更高分辨率下分析新材料,同时保留较大的样品背景。多尺度分析允许多种成像工具和模态(如X射线microCT、DualBeam、激光PFIB、SEM和TEM)关联。

了解更多 ›

自动化颗粒工作流程

自动化纳米颗粒工作流程(APW)是一种用于纳米颗粒分析的透射电子显微镜工作流程,提供纳米级大面积、高分辨率的纳米级成像和数据采集,并进行即时处理。

了解更多 ›

用于将 H2 样式更改为具有 em-h2-header 类 p 的样式表

Contact us

用于材料科学的
电子显微镜服务

为实现理想的系统性能,我们为您提供了由现场服务专家、技术支持部门和认证备件组成的全球网络支持。

支持和服务页脚样式表
字体样式表
卡片样式表